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Abstract—This paper studies the subspace clustering problem. Given some data points approximately drawn from a union of
subspaces, the goal is to group these data points into their underlying subspaces. Many subspace clustering methods have been
proposed and among which sparse subspace clustering and low-rank representation are two representative ones. Despite the different
motivations, we observe that many existing methods own the common block diagonal property, which possibly leads to correct
clustering, yet with their proofs given case by case. In this work, we consider a general formulation and provide a unified theoretical
guarantee of the block diagonal property. The block diagonal property of many existing methods falls into our special case. Second, we
observe that many existing methods approximate the block diagonal representation matrix by using different structure priors, e.g.,
sparsity and low-rankness, which are indirect. We propose the first block diagonal matrix induced regularizer for directly pursuing the
block diagonal matrix. With this regularizer, we solve the subspace clustering problem by Block Diagonal Representation (BDR), which
uses the block diagonal structure prior. The BDR model is nonconvex and we propose an alternating minimization solver and prove its
convergence. Experiments on real datasets demonstrate the effectiveness of BDR.

Index Terms—Subspace clustering, spectral clustering, block diagonal regularizer, block diagonal representation, nonconvex
optimization, convergence analysis
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1 INTRODUCTION

As we embark on the big data era – in which the amount
of the generated and collected data increases quickly, the
data processing and understanding become impossible in
the raw form. Looking for the compact representation of
data by exploiting the structure of data is crucial in under-
standing the data with minimal storage. It is now widely
known that many high dimensional data can be modeled as
samples drawn from the union of multiple low-dimensional
linear subspaces. For example, motion trajectories in a video
[8], face images [2], hand-written digits [13] and movie
ratings [45] can be approximately represented by subspaces,
with each subspace corresponding to a class or category.
Such a subspace structure has been very widely used for the
data processing and understanding in supervised learning,
semi-supervised learning and many other tasks [5], [6], [44],
[46]. In this work, we are interested in the task of subspace
clustering, whose goal is to group (or cluster) the data points
which approximately lie in linear subspaces into clusters
with each cluster corresponding to a subspace. Subspace
clustering has many applications in computer vision [16],
[28], e.g., motion segmentation, face clustering and image
segmentation, hybrid system identification in control [1],
community clustering in social networks [15], to name a
few. Note that subspace clustering is a data clustering task
but with the additional assumption that the sampled data
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have the approximately linear subspace structure. Such data
points are not necessarily locally distributed. The traditional
clustering methods, e.g., spectral clustering [31], which use
the spatial proximity of the data in each cluster are not appli-
cable to subspace clustering. We need some more advanced
methods for subspace clustering by utilizing the subspace
structure as a prior.

Notations. We denote matrices by boldface capital letter-
s, e.g., A, vectors by boldface lowercase letters, e.g., a, and
scalars by lowercase letters, e.g., a. We denote aij or Aij as
the (i, j)-th entry of A. The matrix columns and rows are
denoted by using [·] with subscripts, e.g., [A]i,: is the i-th
row, and [A]:,j is the j-th column. The absolute matrix of A,
denoted by |A|, is the absolute value of the elements of A.
We denote diag(A) as a vector with its i-th element being
the i-th diagonal element of A ∈ Rn×n, and Diag(a) as a
diagonal matrix with its i-th element on the diagonal being
ai. The all one vector is denoted as 1. The identity matrix
is denoted as I. If A is positive semi-definite, we denote
A � 0. For symmetric matrices A,B ∈ Rn×n, we denote
A � B or B � A if B−A � 0. If all the elements of A are
nonnegative, we denote A ≥ 0. The trace of a square matrix
A is denoted as Tr(A). We define [A]+ = max(0,A) which
gives the nonnegative part of the matrix.

Some norms will be used, e.g., `0-norm ‖A‖0 (number
of nonzero elements), `1-norm ‖A‖1 =

∑
ij |aij |, Frobenius

norm (or `2-norm of a vector) ‖A‖ =
√∑

ij a
2
ij , `2,1-norm

‖A‖2,1 =
∑
j ‖[A]:,j‖, `1,2-norm ‖A‖1,2 =

∑
i ‖[A]i,:‖,

spectral norm ‖A‖2 (largest singular value), `∞-norm
‖A‖∞ = maxij |aij | and nuclear norm ‖A‖∗ (sum of all
singular values).
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1.1 Related Work

Due to the numerous applications in computer vision and
image processing, during the past two decades, subspace
clustering has been extensively studied and many algo-
rithms have been proposed to tackle this problem. Ac-
cording to their mechanisms of representing the subspaces,
existing works can be roughly divided into four main
categories: mixture of Gaussian, matrix factorization, alge-
braic, and spectral-type methods. The mixture of Gaussian
based methods model the data points as independent sam-
ples drawn from a mixture of Gaussian distributions. So
subspace clustering is converted to the model estimation
problem and the estimation can be performed by using the
Expectation Maximization (EM) algorithm. Representative
methods are K-plane [3] and Q-flat [37]. The limitations are
that they are sensitive to errors and the initialization due to
the optimization mechanism. The matrix factorization based
methods, e.g., [8], [12], tend to reveal the data segmentation
based on the factorization of the given data matrix. They are
sensitive to data noise and outliers. Generalized Principal
Component Analysis (GPCA) [38] is a representative alge-
braic method for subspace clustering. It fits the data points
with a polynomial. However, this is generally difficult due
to the data noise and its cost is high especially for high-
dimensional data. Due to the simplicity and outstanding
performance, the spectral-type methods attract more atten-
tion in recent years. We give a more detailed review of this
type of methods as follows.

The spectral-type methods use the spectral clustering
algorithm [31] as the framework. They first learn an affinity
matrix to find the low-dimensional embedding of data and
then k-means is applied to achieve the final clustering result.
The main difference among different spectral-type methods
lies in the different ways of affinity matrix construction.
The entries of the affinity matrix (or graph) measure the
similarities of the data point pairs. Ideally, if the affinity ma-
trix is block diagonal, i.e., the between-cluster affinities are
all zeros, one may achieve perfect data clustering by using
spectral clustering. The way of affinity matrix construction
by using the typical Gaussian kernel, or other local informa-
tion based methods, e.g., Local Subspace Affinity (LSA) [43],
may not be a good choice for subspace clustering since the
data points in a union of subspaces may be distributed ar-
bitrarily but not necessarily locally. Instead, a large body of
affinity matrix construction methods for subspace clustering
by using global information have been proposed in recent
years, e.g., [10], [20], [23], [25], [26], [27], [40]. The main
difference among them lies in the used regularization for
learning the representation coefficient matrix.

Assume that we are given the data matrix X ∈ RD×n,
where each column of X belongs to a union of k subspaces
{S}ki=1. Each subspace i contains ni data samples with∑k
i=1 ni = n. Let Xi ∈ RD×ni denote the submatrix

in X that belongs to Si. Without loss of generality, let
X = [X1,X2, · · · ,Xk] be ordered according to their sub-
space membership. We discuss the case that the sampled
data are noise free. By taking advantage of the subspace
structure, the sampled data points obey the so called self-
expressiveness property, i.e., each data point in a union of
subspaces can be well represented by a linear combination

of other points in the dataset. This can be formulated as

X = XZ, (1)

where Z ∈ Rn×n is the representation coefficient matrix.
The choice of Z is usually not unique and the goal is to
find certain Z such that it is discriminative for subspace
clustering. In the ideal case, we are looking for a linear
representation Z such that each sample is represented as
a linear combination of samples belonging to the same
subspace, i.e., Xi = XiZi, where Zi is expected not to be an
identity matrix. In this case, Z in (1) has the k-block diagonal
structure1, i.e.,

Z =




Z1 0 · · · 0
0 Z2 · · · 0
...

...
. . .

...
0 0 · · · Zk


 , Zi ∈ Rni×ni . (2)

So the above Z reveals the true membership of data X. If
we apply spectral clustering on the affinity matrix defined
as (|Z| + |Z>|)/2, then we may get correct clustering. So
the block diagonal matrix plays a central role in the analysis
of subspace clustering, though there has no “ground-truth”
Z (or it is not necessary). We formally give the following
definition.

Definition 1. (Block Diagonal Property (BDP)) Given the
data matrix X = [X1,X2, · · · ,Xk] drawn from a union of
k subspaces {Si}ki=1, we say that Z obeys the Block Diagonal
Property Property if Z is k-block diagonal as in (2), where the
nonzero entries Zi correspond to only Xi.

Note that the concepts of the k-block diagonal matrix
and block diagonal property have some connections and
differences. The block diagonal property is specific for sub-
space clustering problem but k-block diagonal matrix is not.
A matrix obeying the block diagonal property is k-block
diagonal, but not vice versa. The block diagonal property
further requires that each block corresponds one-to-one with
each subject of data.

Problem (1) may have many feasible solutions and thus
the regularization is necessary to produce the block diag-
onal solution. Motivated by the observation that the block
diagonal solution in (2) is sparse, the Sparse Subspace Clus-
tering (SSC) [10] finds a sparse Z by `0-norm minimizing.
However, this leads to an NP-hard problem and the `1-norm
is used as the convex surrogate of `0-norm. This leads to the
following convex program

min
Z
‖Z‖1 , s.t. X = XZ,diag(Z) = 0. (3)

It is proved that the optimal solution Z by SSC satisfies the
block diagonal property when the subspaces are indepen-
dent.

Definition 2. (Independent subspaces) A collection of sub-
spaces {Si}ki=1 is said to be independent if dim(⊕ni=1Si) =∑n
i=1 dim(Si), where ⊕ denotes the direct sum operator.

1. In this work, we say that a matrix is k-block diagonal if it has
at least k connected components (blocks). The block diagonalty is up
to a permutation, i.e., if Z is k-block diagonal, then P>ZP is still k-
block diagonal for any permutation matrix P. See also the discussions
in Section 3.1.
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TABLE 1: A summary of existing spectral-type subspace
clustering methods based on different choices of f and Ω.

Methods f(Z,X) Ω

SSC [10] ‖Z‖1 {Z|diag(Z) = 0}
LRR [20] ‖Z‖∗ -
MSR [27] ‖Z‖1 + λ ‖Z‖∗ {Z|diag(Z) = 0}

SSQP [40]
∥∥Z>Z

∥∥
1

{Z|diag(Z) = 0,

Z ≥ 0}
LSR [26] ‖Z‖2 -

CASS [23]
∑

j ‖XDiag([Z]:,j)‖∗ {Z|diag(Z) = 0}
1Ω is not specified if there has no restriction on Z.

Another important spectral-type method is Low-Rank
Representation (LRR) [20]. It seeks a low-rank coefficient
matrix by nuclear norm minimization

min
Z
‖Z‖∗ , s.t. X = XZ. (4)

The above problem has a unique closed form solution
Z = VV>, where V is from the skinny SVD of X = USV>.
This matrix, termed Shape Interaction Matrix (SIM) [8],
has been widely used for subspace segmentation. It also
enjoys the block diagonal property when the subspaces are
independent [20].

Beyond SSC and LRR, many other subspace clustering
methods, e.g., [23], [26], [27], [40], have been proposed and
they all fall into the following formulation

min f(Z,X), s.t. X = XZ,Z ∈ Ω, (5)

where Ω is some matrix set. The main difference lies in
the choice of the regularizer or objective. For example,
the Multi-Subspace Representation (MSR) [27] combines the
idea of SSC and LRR, while the Least Squares Regression
(LSR) [26] simply uses ‖Z‖2 and it is efficient due to a
closed form solution. See Table 1 for a summary of existing
spectral-type methods. An important common property for
the methods in Table 1 is that their solutions all obey the
block diagonal property under certain subspace assump-
tion (all require independent subspaces assumption except
SSQP [40] that requires orthogonal subspaces assumption).
Their proofs use specific properties of their objectives.

Beyond the independent subspaces assumption, some
other subspaces assumptions are proposed to analyze the
block diagonal property in different settings [10], [34], [35],
[41], [42]. However, the block diagonal property of Z does
not guarantee the correct clustering, since each block may
not be fully connected. For example, the work [10] shows
that the block diagonal property holds for SSC when the
subspaces are disjoint and the angles between subspace
pairs are large enough. Such an assumption is weaker than
the independent subspaces assumption, but the price is
that SSC suffers from the so-called “graph connectivity”
issue [30]. This issue is also related to the correlation of
the columns of the data matrix [26]. As will be seen in
Theorem 3 given later, the `1-minimization in SSC makes
not only the between-cluster connections sparse, but also the
inner-cluster connections sparse. In this case, the clustering
results obtained by spectral clustering may not be correct. N-
evertheless, the block diagonal property is the condition that
verifies the design intuition of the spectral-type methods. If

the obtained coefficient matrix Z obeys the block diagonal
property and each block is fully connected (Z is not “too
sparse”), then we immediately get the correct clustering.

The block diagonal property of the solutions by different
methods in Table 1 is common under certain subspace
assumptions. However, in real applications, due to the data
noise or corruptions, the required assumptions usually do
not hold and thus the block diagonal property is violated.
By taking advantage of the k-block diagonal structure as
a prior, the work [11] considers SSC and LRR with an
additional hard Laplacian constraint, which enforces Z to
be k-block diagonal with exact k connected blocks. Though
such a k-block diagonal solution may not obey the block
diagonal property without additional subspace assumption,
it is verified to be effective in improving the clustering per-
formance of SSC and LRR in some applications. Due to the
nonconvexity, this model suffers from some issues: the used
stochastic sub-gradient descent solver may not be stable;
and the theoretical convergence guarantee is relatively weak
due to the required assumptions on the data matrix.

1.2 Contributions

In this work, we focus on the most recent spectral-type
subspace clustering methods due to their simplicity and
effectiveness. From the above review, it can be seen that
the key difference between different spectral-type subspace
clustering methods (as given in Table 1) is the used reg-
ularizer on the representation matrix Z. Their motivations
for the design intuition may be quite different, but all
have the common property that their solutions obey the
block diagonal property under certain subspace assump-
tion. However, their proofs of such a property are given
case by case by using specific properties of the models.
Moreover, existing methods in Table 1 are indirect as their
regularizers are not induced by the block diagonal matrix
structure. The method in [11] that enforces the solution to
be k-block diagonal with exact k connected blocks by a
hard constraint is a direct method. But such a constraint
may be too restrictive since the k-block diagonal matrix
is not necessary for correct clustering when using spectral
clustering. A soft regularizer instead of the hard constraint
may be more flexible. Motivated by these observations, we
raise several interesting questions:
1. Consider the general model (5), what kind of objective
f guarantees that the solutions obey the block diagonal
property?

2. Is it possible to give a unified proof of the block diagonal
property by using common properties of the objective f?

3. How to design a soft block diagonal regularizer which
encourages a matrix to be or close to be k-block diagonal?
When applying it to subspace clustering, how to solve
the block diagonal regularized problem efficiently with
the convergence guarantee?
We aim to address the above questions and in particular

we make the following contributions2:
1. We propose the Enforced Block Diagonal (EBD) condi-

tions and prove in a unified manner that if the objective
function in (5) satisfies the EBD conditions, the solutions

2. Part of this work is extended from our conference paper [26].
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Fig. 1: Illustrations of three interesting structures of matrix:
sparse, low-rank and block diagonal matrices. The first two are
extensively studied before. This work focuses on the pursuit of
block diagonal matrix.

to (5) obey the block diagonal property when the sub-
spaces are independent. We show that the EBD condition-
s are not restrictive and a large family of norms and their
combinations satisfy these conditions. The block diagonal
property of existing methods in Table 1 falls into our
special case.

2. We propose a k-block diagonal regularizer which encour-
ages a nonnegative symmetric matrix to be k-block diag-
onal. Beyond the sparsity and low-rankness, we would
like to emphasize that the block diagonal matrix is anoth-
er interesting structure and our proposed block diagonal
regularizer is the first soft regularizer for pursuing such
a structure. The regularizer plays a similar role as the `0-
or `1-norm for pursuing sparsity and the rank function
or nuclear norm for pursuing low-rankness. See Figure 1
for intuitive illustrations of the three structured matrices.

3. We propose the Block Diagonal Representation (BDR)
method for subspace clustering by using the block diag-
onal regularizer. Compared with the regularizers used in
existing methods, BDR is more direct as it uses the block
diagonal structure prior. A disadvantage of the BDR
model is that it is nonconvex due to the block diagonal
regularizer. We solve it by an alternating minimization
method and prove the convergence without restrictive as-
sumptions. Experimental analysis on several real datasets
demonstrates the effectiveness of our approach.

2 THEORY OF BLOCK DIAGONAL PROPERTY

In this section, considering problem (5), we develop the
unified theory for pursuing solutions which obey the block
diagonal property. We first give an important property of the
feasible solution to (5). This will lead to our EBD conditions.

Theorem 1. Consider a collection of data points drawn from k
independent subspaces {Si}ki=1 of dimensions {di}ki=1. Let X =
[X1, · · · ,Xk] ∈ RD×n, where Xi ∈ RD×ni denotes the data
point drawn from Si, rank(Xi) = di and

∑k
i=1 ni = n. For any

feasible solution Z∗ ∈ Rn×n to the following system

X = XZ, (6)

decompose it into two parts, i.e., Z∗ = ZB + ZC , where

ZB =




Z∗1 0 · · · 0

0 Z∗2 · · · 0
...

...
. . .

...
0 0 · · · Z∗k



, ZC =




0 ∗ · · · ∗
∗ 0 · · · ∗
...

...
. . .

...
∗ ∗ · · · 0



, (7)

with Z∗i ∈ Rni×ni corresponding to Xi. Then, we have XZB =
X, or equivalently XiZ

∗
i = Xi, i = 1, · · · , k, and XZC = 0.

Proof. For any feasible solution Z∗ to problem (6), we
assume that [X]:,j = [XZ∗]:,j ∈ Sl for some l. Then
[XZB ]:,j = [X1Z1, · · · ,XkZk]:,j ∈ Sl and [XZC ]:,j ∈
⊕i6=lSi. On the other hand, [XZC ]:,j = [XZ∗]:,j −
[XZB ]:,j ∈ Sl. This implies that [XZC ]:,j ∈ Sl ∩ ⊕i 6=lSi.
By the assumption that the subspaces are independent, we
have Sl ∩ ⊕i 6=lSi = {0}. Thus, [XZC ]:,j = 0. Consider the
above procedure for all j = 1, · · · , n, we have XZC = 0 and
thus XZB = X−XZC = X. The proof is completed.

Theorem 1 gives the property of the representation ma-
trix Z∗ under the independent subspaces assumption. The
result shows that, to represent a data point [X]:,j in Sl, only
the data points Xl from the same subspace Sl have the real
contributions, i.e., X = XZB , while the total contribution
of all the data points from other subspaces ⊕i 6=lSi is zero,
i.e., XZC = 0. So Theorem 1 characterizes the underlying
representation contributions of all data points. However,
such contributions are not explicitly reflected by the repre-
sentation matrix Z∗ since the decomposition Z∗ = ZB +ZC

is unknown when ZC 6= 0. In this case, the solution Z∗ to (6)
does not necessarily obey the block diagonal property, and
thus it does not imply the true clustering membership of
data. To address this issue, it is natural to consider some
regularization on the feasible solution set of (6) to make
sure that ZC = 0. Then Z∗ = ZB obeys the block diagonal
property. Previous works show that many regularizers, e.g.,
the `1-norm and many others shown in Table 1, can achieve
this end. Now the questions is, what kind of functions leads
to a similar effect? Motivated by Theorem 1, we give a
family of such functions as below.

Definition 3. (Enforced Block Diagonal (EBD) conditions)
Given any function f(Z,X) defined on (Ω,∆), where Ω is a set
consisting of some square matrices and ∆ is a set consisting of

matrices with nonzero columns. For any Z =

[
Z1 Z3

Z4 Z2

]
∈ Ω,

Z 6= 0, Z1, Z2 ∈ Ω, and X = [X1,X2], where X1 and X2

correspond to Z1 and Z2, respectively. Let ZB =

[
Z1 0

0 Z2

]
∈

Ω. Assume that all the matrices are of compatible dimensions. The
EBD conditions for f are
(1) f(Z,X) = f(P>ZP,XP), for any permutation matrix P,

P>ZP ∈ Ω.
(2) f(Z,X) ≥ f(ZB ,X), where the equality holds if and only

if Z = ZB (or Z3 = Z4 = 0).
(3) f(ZB ,X) = f(Z1,X1) + f(Z2,X2).

We have the following remarks for the EBD conditions:
1. The EBD condition (1) is a basic requirement for sub-

space clustering. It guarantees that the clustering re-
sult is invariant to any permutation of the columns
of the input data matrix X. Though we assume that
X = [X1,X2, · · · ,Xk] is ordered according to the true
membership for the simplicity of discussion, the input
matrix in problem (5) can be X̂ = XP, where P can be
any permutation matrix which reorders the columns of
X. Let Z be feasible to X = XZ. Then Ẑ = P>ZP is
feasible to X̂ = X̂Ẑ. The EBD condition (1) guarantees
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that f(Z,X) = f(Ẑ, X̂). Thus, Ẑ is equivalent to Z up
to any reordering of the input data matrix X. This is
necessary for data clustering.

2. The EBD condition (2) is the key which enforces the so-
lutions to (5) to be block diagonal under certain subspace
assumption. From Theorem 1, we have X = XZ = XZB .
So the EBD condition (2) guarantees that Z = ZB when
minimizing the objective. This will be more clear from
the proof of Theorem 3.

3. The EBD condition (3) is actually not necessary to enforce
the solutions to (5) to be block diagonal. But through the
lens of this condition, we will see the connection between
the structure of each block of the block diagonal solutions
and the used objective f . Also, we find that many objec-
tives in existing methods satisfy this condition.
The EBD conditions are not restrictive. Before giving

the examples, we provide some useful properties discussing
different types of functions that satisfy the EBD conditions.

Proposition 1. If f satisfies the EBD conditions (1)-(3) on
(Ω,∆), then it does on (Ω1,∆), where Ω1 ⊂ Ω and Ω1 6= ∅.
Proposition 2. Assume that f(Z,X) =

∑
ij gij(zij), where

gij is a function defined on Ωij , and it satisfies that gij(zij) ≥ 0,
gij(zij) = 0 if and only if zij = 0. Then f satisfies the EBD
conditions (1)-(3) on (Ω,RD×n), where Ω = {Z|zij ∈ Ωij}.
Proposition 3. Assume that f(Z,X) =

∑
j gj([Z]:,j ,X),

where gj is a function defined on (Ωj ,∆). Assume that X =
[X1,X2], w = [w1;w2] ∈ Ωj , wB = [w1; 0] ∈ Ωj , and their
dimensions are compatible. If gj satisfies the following conditions:
(1) gj(w,X) = gj(P

>w,XP), for any permutation matrix P,
P>w ∈ Ωj ,

(2) gj(w,X) ≥ gj(wB ,X), where the equality holds if and only
if w = wB ,

(3) gj(wB ,X) = gj(w1,X1),
then f satisfies the EBD conditions (1)-(3) on (Ω,∆), where Ω =
{Z|[Z]:,j ∈ Ωj}.
Proposition 4. Assume that f(Z,X) =

∑
i gi([Z]i,:,X),

where gi is a function defined on (Ωi,∆). Assume that X =
[X1,X2], w> = [w1;w2]> ∈ Ωi, (wB)> = [w1, 0]> ∈ Ωi,
and their dimensions are compatible. If gi satisfies the following
conditions:
(1) gi(w>,X) = gi(w

>P,XP), for any permutation matrix
P, w>P ∈ Ωi,

(2) gi(w>,X) ≥ gi((wB)>,X), where the equality holds if and
only if w = wB ,

(3) gi((wB)>,X) = gi(w
>
1 ,X1),

then f satisfies the EBD conditions (1)-(3) on (Ω,∆), where Ω =
{Z|[Z]i,: ∈ Ωi}.
Proposition 5. If fi satisfies the EBD conditions (1)-(3) on
(Ωi,∆), i = 1, · · · ,m, then

∑m
i λifi (for positive λi) also

satisfies the EBD conditions (1)-(3) on (Ω,∆) when Ω = ∩mi=1Ωi
and Ω 6= ∅.
Proposition 6. Assume that f1 satisfies the EBD conditions (1)-
(3) on (Ω1,∆), f2 satisfies the EBD conditions (1)(3) on (Ω2,∆)
and f2(Z,X) ≥ f2(ZB ,X), where Z, ZB and X are the same as
those in Definition 3. Then, f1 + f2 satisfies the EBD conditions
(1)-(3) on (Ω,∆) when Ω = Ω1 ∩ Ω2 and Ω 6= ∅.

Theorem 2. Some functions of interest which satisfy the EBD
conditions (1)-(3) are:

Function f(Z,X) (Ω,∆)

`0- and `1-norm ‖Z‖0 and ‖Z‖1 -
square of ‖Z‖2 -

Frobenius norm
elastic net ‖Z‖1 + λ ‖Z‖2 -
`2,1-norm ‖Z‖2,1 -
`1,2-norm ‖Z‖1,2 -

-
∥∥Z>Z

∥∥
1

Ω = {Z|Z ≥ 0}
`1+nuclear norm ‖Z‖1 + λ ‖Z‖∗ -

trace Lasso
∑

j ‖XDiag([Z]:,j)‖∗
∆ = {X|∀j,
[X]:,j 6= 0}

others
∑

ij λij |zij |pij -
1Ω (resp. ∆) is not specified if there has no restriction on Z (resp. X).
2For the parameters, λ > 0, λij > 0, pij ≥ 0.

Theorem 2 gives some functions of interest which satisfy
the EBD conditions. They can be verified by using Propo-
sitions 2-6. An intuitive verification is discussed as follows
and the detailed proofs can be found in the supplementary
material.
1. Proposition 2 verifies the EBD conditions of functions

which are separable w.r.t. each element of a matrix, e.g.,
‖Z‖0, ‖Z‖1, ‖Z‖2 and

∑
ij λij |zij |pij .

2. Proposition 3 verifies the EBD conditions of functions
which are separable w.r.t. each column of a matrix, e.g.,
‖Z‖2,1 and

∑
i ‖XDiag([Z]:,i)‖∗.

3. Proposition 4 verifies the EBD conditions of functions
which are separable w.r.t. each row of a matrix, e.g.,
‖Z‖1,2.

4. Proposition 5 shows that the function which is a pos-
itive linear combination of functions that satisfy the
EBD conditions still satisfies the EBD conditions, e.g.,
‖Z‖1 + λ ‖Z‖2 or more generally ‖Z‖0 + λ1 ‖Z‖1 +

λ2 ‖Z‖2+λ3 ‖Z‖2,1+λ4 ‖Z‖1,2+λ5
∥∥Z>Z

∥∥
1
+λ6 ‖Z‖∗+

λ7
∑
i ‖XDiag([Z]:,i)‖∗, where λi > 0. So Proposition 5

enlarges the family of such type of functions and shows
that the EBD conditions are not restrictive.

5. Proposition 6 shows that f1 + f2 satisfies the EBD condi-
tions (1)-(3) when f1 satisfies the EBD conditions (1)-(3)
and f2 satisfies the EBD conditions (1)(3) and the first
part of EBD condition (2). An example is ‖Z‖1 + λ ‖Z‖∗.
See more discussions about ‖Z‖∗ below.
There are also some interesting norms which do not

satisfy the EBD conditions. For example, considering the
infinity norm ‖Z‖∞, the EBD condition (1) holds while the
other two do not. The nuclear norm ‖Z‖∗ satisfies the EBD
condition (1)(3). But for the EBD condition (2), we only have
(see Lemma 7.4 in [21])

∥∥∥∥∥

[
Z1 Z3

Z4 Z2

]∥∥∥∥∥
∗
≥
∥∥∥∥∥

[
Z1 0

0 Z2

]∥∥∥∥∥
∗

= ‖Z1‖∗ + ‖Z2‖∗ .

But the equality may hold when Z3 6= 0 and Z4 6= 0. A
counterexample is that, when both Z and ZB are positive
semidefinite, ‖Z‖∗ =

∑
i λi(Z) = Tr(Z) = Tr(ZB) =∑

i λi(Z
B) =

∥∥ZB
∥∥
∗, where λi(Z)’s denote the eigenvalues

of Z. As will be seen in the proof of Theorem 3, this issue
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makes the proof of the block diagonal property of LRR
which uses the nuclear norm different from others. We
instead use the uniqueness of the LRR solution to (4) to fix
this issue.

Theorem 3. Consider a collection of data points drawn from
k independent subspaces {Si}ki=1 of dimensions {di}ki=1. Let
Xi ∈ RD×ni denote the data points in Si, rank(Xi) = di
and

∑k
i=1 ni = n. Let X = [X1, · · · ,Xk] ∈ ∆, where ∆ is

a set consisting of matrices with nonzero columns. Considering
problem (5), assume that {Z|X = XZ} ∩Ω is nonempty and let
Z∗ be any optimal solution. If one of the following cases holds,
Case I: f satisfies the EBD condition (1)-(2) on (Ω,∆),
Case II: f satisfies the EBD condition (1) on (Ω,∆) and Z∗ is the
unique solution,
then Z∗ satisfies the block diagonal property, i.e.,

Z∗ =




Z∗1 0 · · · 0

0 Z∗2 · · · 0
...

...
. . .

...
0 0 · · · Z∗k



, (8)

with Z∗i ∈ Rni×ni corresponding to Xi. Furthermore, if f
satisfies the EBD conditions (1)-(3), then each block Z∗i in (8)
is optimal to the following problem:

min
W

f(W,Xi) s.t. Xi = XiW,W ∈ Ω. (9)

Proof. First, by the EBD condition (1), f(Z,X) =
f(P>ZP,XP) holds for any permutation P. This guar-
antees that the learned Z∗ based on X by solving (5) is
equivalent to P>Z∗P based on XP. So we only need to
discuss the structure of Z∗ based on the ordered input data
matrix X = [X1, · · · ,Xk].

For any optimal solution Z∗ ∈ Ω to problem (5), we
decompose it into two parts Z∗ = ZB + ZC , where ZB

and ZC are of the forms in (7). Then, by Theorem 1, we
have XZB = X and XZC = 0. This combines the EBD
conditions, which implies that ZB is feasible to (5). By the
EBD conditions (2), we have f(Z∗,X) ≥ f(ZB ,X). On the
other hand, Z∗ is optimal to (5), thus we have f(Z∗,X) ≤
f(ZB ,X). Therefore, f(Z∗,X) = f(ZB ,X). In Case I, by
the EBD condition (2), we have Z∗ = ZB . The same result
holds in Case II. Hence, Z∗ = ZB satisfies the block diagonal
property in both cases.

If the EBD condition (3) is further satisfied, we have
f(Z∗,X) =

∑k
i=1 f(Z∗i ,Xi), which is separable. By the

block diagonal structure of Z∗, X = XZ∗ is equivalent
to Xi = XiZ

∗
i , i = 1, · · · , k. Hence, both the objectives

and constraints of (5) are separable and thus problem (5)
is equivalent to problem (9) for all i = 1, · · · , k. This
guarantees the same solutions of (5) and (9).

We have the following remarks for Theorem 3:
1. Theorem 3 gives a general guarantee of the block diag-

onal property for the solutions to (5) based on the EBD
conditions. By Theorem 2, the block diagonal properties
of existing methods (except LRR) in Table 1 are special
cases of Theorem 3 (Case I). Note that some existing
models, e.g., SSC, have a constraint diag(Z) = 0. This
does not affect the EBD conditions due to Proposition 1.
Actually, additional proper constraints can be introduced

in (5) if necessary and the block diagonal property still
holds.

2. The nuclear norm used in LRR does not satisfy the EBD
condition (2). Fortunately, the LRR model (4) has a unique
solution [21]. Thus the block diagonal property of LRR is
another special case of Theorem 3 (Case II). If we choose
Ω = {Z|X = XZ}, then the nuclear norm satisfies the
EBD conditions (1)(2) on (Ω,Rd×n) due to the uniqueness
of LRR. So, in some cases, the Case II can be regarded as
a special case of Case I in Theorem 3.

3. The SSQP method [40] achieves the solution obeying
the block diagonal property under the orthogonal sub-
space assumption. However, the EBD conditions and
Theorem 3 show that the weaker independent subspace
assumption is enough. Actually, if the subspaces are
orthogonal, X>X already obeys the block diagonal prop-
erty.

4. Theorem 3 not only provides the block diagonal prop-
erty guarantee of Z∗ (there are no connections between-
subspaces), but also shows what property each block has
(the property of the connections within-subspace). Let us
take the SSC model as an example. The i-th block Z∗i of
Z∗, which is optimal to (3), is the minimizer to

Z∗i = arg min
W
‖W‖1 s.t. Xi = XiW,diag(W) = 0.

So SSC not only finds a sparse representation between-
subspaces but also within-subspace. Hence, each Z∗i may
be too sparse (not fully connected) especially when the
columns of Xi are highly correlated. This perspective
provides an intuitive interpretation of the graph connec-
tivity issue in SSC.

5. Theorem 3 not only provides a good summary of existing
methods, but also provides the general motivation for
designing new subspace clustering methods as the EBD
conditions are easy to verify by using Proposition 1-6.

3 SUBSPACE CLUSTERING BY BLOCK DIAGONAL
REPRESENTATION

Theorem 3 shows that it is not difficult to find a solution
obeying the block diagonal property under the independent
subspaces assumption as the EBD conditions are not restric-
tive. Usually, the solution is far from being k-block diagonal
since the independent subspaces assumption does not hold
due to data noise. The more direct method [11] enforces the
representation coefficient matrix to be k-block diagonal with
exact k connected blocks. However, in practice, the k-block
diagonal affinity matrix is not necessary for correct cluster-
ing when using spectral clustering. Similar phenomenons
are observed in the pursuits of sparsity and low-rankness.
The sparsity (or low-rankness) is widely used as a prior in
many applications, but the exact sparsity (or rank) is not
(necessarily) known. So the `1-norm (or nuclear norm) is
very widely as a regularizer to encourage the solution to be
sparse (or low-rank). Now, considering the k-block diagonal
matrix, which is another interesting structure, what is the
corresponding regularizer?

In this section, we will propose a simple block diagonal
regularizer for pursuing such an interesting structure. By
using this regularizer, we then propose a direct subspace
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clustering subspace method, termed Block Diagonal Repre-
sentation (BDR). We will also propose an efficient solver and
provide the convergence guarantee.

3.1 Block Diagonal Regularizer
In this work, we say that a matrix is k-block diagonal if it has
at least k connected components (blocks). Such a concept is
somewhat ambiguous. For example, consider the following
matrix

B =



B0 0 0

0 B0 0

0 0 B0


 , where B0 =

[
1 0

−1 1

]
(10)

is fully connected. We can say that B is 3-block diagonal
(this is what we expect intuitively). But by the definition, we
can also say that it is 1- or 2-block diagonal. Thus, we need
a more precise way to characterize the number of connected
components.

Assume that B is an affinity matrix, i.e., B ≥ 0 and
B = B>, the corresponding Laplacian matrix, denoted as
LB, is defined as

LB = Diag(B1)−B.

The number of connected components of B is related to the
spectral property of the Laplacian matrix.

Theorem 4. [39, Proposition 4] For any B ≥ 0, B = B>, the
multiplicity k of the eigenvalue 0 of the corresponding Laplacian
matrix LB equals the number of connected components (blocks)
in B.

For any affinity matrix B ∈ Rn×n, let λi(LB), i =
1, · · · , n, be the eigenvalues of LB in the decreasing order.
It is known that LB � 0 and thus λi(LB) ≥ 0 for all i. Then,
by Theorem 4, B has k connected components if and only if

λi(LB)

{
> 0, i = 1, · · · , n− k,
= 0, i = n− k + 1, · · · , n. (11)

Motivated by such a property, we define the k-block diago-
nal regularizer as follows.

Definition 4. (k-block diagonal regularizer) For any affinity
matrix B ∈ Rn×n, the k-block diagonal regularizer is defined as
the sum of the k smallest eigenvalues of LB, i.e.,

‖B‖
k

=
n∑

i=n−k+1

λi(LB). (12)

It can be seen that ‖B‖
k

= 0 is equivalent to the fact
that the affinity matrix B is k-block diagonal. So ‖B‖

k
can

be regarded as the block diagonal matrix structure induced
regularizer.

It is worth mentioning that (11) is equivalent to
rank(LB) = n − k. One may consider using rank(LB) as
the k-block diagonal regularizer. However, this is not a good
choice. The reason is that the number of data points n is
usually much larger than the number of clusters k and thus
LB is of high rank. It is generally unreasonable to find a high
rank matrix by minimizing rank(LB). More importantly, it
is not able to control the targeted number of blocks, which
is important in subspace clustering. Another choice is the
convex relaxation ‖LB‖∗, but it suffers from the same issues.

It is interesting that the sparse minimization in the SSC
model (3) is equivalent to minimizing ‖LB‖∗. Indeed,

‖LB‖∗ = Tr(LB) =Tr(Diag(B1)−B)

= ‖B‖1 − ‖diag(B)‖1 ,
where we use the facts that B = B>, B ≥ 0 and LB � 0.
So, the SSC model (3) is equivalent to

min
Z
‖LB‖∗

s.t. X = XZ, diag(Z) = 0, B = (|Z|+ |Z>|)/2.
This perspective shows that the approximation of the block
diagonal matrix by using sparse prior in SSC is loose. In
contrast, our proposed k-block diagonal regularizer (12) not
only directly encourages the matrix to be block diagonal,
but is also able to control the number of blocks, which is
important for subspace clustering. A disadvantage is that
the k-block diagonal regularizer is nonconvex.

3.2 Block Diagonal Representation
With the proposed k-block diagonal regularizer at hand,
we now propose the Block Diagonal Representation (BDR)
method for subspace clustering. We directly consider the
BDR model for handling data with noise

min
B

1

2
‖X−XB‖2 + γ ‖B‖

k
,

s.t. diag(B) = 0,B ≥ 0,B = B>,

where γ > 0 and we simply require the representation
matrix B to be nonnegative and symmetric, which are nec-
essary properties for defining the block diagonal regularizer
on B. But the restrictions on B will limit its representation
capability. We alleviate this issue by introducing an interme-
diate term

min
Z,B

1

2
‖X−XZ‖2 +

λ

2
‖Z−B‖2 + γ ‖B‖

k
,

s.t. diag(B) = 0,B ≥ 0,B = B>.
(13)

The above two models are equivalent when λ > 0 is suffi-
ciently large. As will be seen in Section 3.3, another benefit
of the term λ

2 ‖Z − B‖2 is that it makes the subproblems
involved in updating Z and B strongly convex and thus
the solutions are unique and stable. This also makes the
convergence analysis easy.

Example 1. We give an intuitive example to illustrate
the effectiveness of BDR. We generate a data matrix X =
[X1,X2, · · · ,Xk] with its columns sampled from k sub-
spaces without noise. We generate k = 5 subspaces {Si}ki=1

whose bases {Ui}ki=1 are computed by Ui+1 = TUi,
1 ≤ i ≤ k, where T is a random rotation matrix and
U1 ∈ RD×r is a random orthogonal matrix. We set D = 30
and r = 5. For each subpace, we sample ni = 50 data
vectors by Xi = UiQi, 1 ≤ i ≤ k, with Qi being an r × ni
i.i.d.N (0, 1) matrix. So we have X ∈ RD×n, where n = 250.
Each column of X is normalized to have a unit length. We
then solve (13) to achieve Z and B (we set λ = 10 and
γ = 3). Note that the generated data matrix X is noise
free. So we also compute the shape interaction matrix VV>

(here V is from the skinny SVD of X = USV>), which is
the solution to the LRR model (4), for comparison. We plot
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(a) VV> (b) binarized VV>
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Fig. 2: Plots of the shape interaction matrix VV>, Z and B from
BDR and their binarized versions respectively for Example 1.

VV>, Z and B and their binarized versions in Figure 2. The
binarization Ẑ of a matrix Z is defined as

Ẑij =

{
0, if |Zij | <= τ,

1, otherwise,

where we use τ = 10−3. From Figure 2, it can be seen
that both VV> and its binarized version are very dense
and neither of them obeys the block diagonal property. This
implies that the generated subspaces are not independent,
though the sampled data points are noise free. In contrast,
the obtained B by our BDR and its binarized version are not
only k-block diagonal but they also obey the block diagonal
property (this observation does not depend on the choice
of the binarization parameter τ ). This experiment clearly
shows the effectiveness of the proposed k-block diagonal
regularizer for pursuing a solution obeying the block di-
agonal property in the case that the independent subspaces
assumption is violated. Moreover, we observe that Z is close
to but denser than B. From the binarized version, we see
that Z is not a k-block diagonal matrix. However, when
applying the spectral clustering algorithm on Z and B, we
find that both lead to correct clustering while VV> does
not. This shows the robustness of spectral clustering to the

Algorithm 1 Solve (14) by Alternating Minimization

Initialize: k = 0, Wk = 0, Zk = 0, Bk = 0.
while not converged do

1) Compute Wk+1 by solving (15);
2) Compute Zk+1 by solving (16);
3) Compute Bk+1 by solving (17);
4) k = k + 1.

end while

affinity matrix which is not but “close to” k-block diagonal.
When γ is relatively smaller, we observe that B may not
be k-block diagonal, but it still leads to correct clustering.
This shows that, for the subspace clustering problem, the
soft block diagonal regularizer is more flexible than the hard
constraint in [11].

3.3 Optimization of BDR

We show how to solve the nonconvex problem (13). The key
challenge lies in the nonconvex term ‖B‖ k . We introduce
an interesting property about the sum of eigenvalues by Ky
Fan to reformulate ‖B‖

k
.

Theorem 5. [9, p. 515] Let L ∈ Rn×n and L � 0. Then

n∑

i=n−k+1

λi(L) = min
W
〈L,W〉, s.t. 0 �W � I, Tr(W) = k.

Then, we can reformulate ‖B‖
k

as a convex program

‖B‖
k

= min
W
〈LB,W〉, s.t. 0 �W � I, Tr(W) = k.

So (13) is equivalent to

min
Z,B,W

1

2
‖X−XZ‖2 +

λ

2
‖Z−B‖2 + γ〈Diag(B1)−B,W〉

s.t. diag(B) = 0,B ≥ 0,B = B>, (14)
0 �W � I,Tr(W) = k.

There are 3 blocks of variables in problem (14). We observe
that W is independent from Z, thus we can group them
as a super block {W,Z} and treat {B} as the other block.
Then (14) can be solved by alternating updating {W,Z}
and {B}.

First, fix B = Bk, and update {Wk+1,Zk+1} by

{Wk+1,Zk+1} = arg min
W,Z

1

2
‖X−XZ‖2 +

λ

2
‖Z−B‖2

+ γ〈Diag(B1)−B,W〉
s.t. 0 �W � I,Tr(W) = k.

This is equivalent to updating Wk+1 and Zk+1 separably
by

Wk+1 = arg min
W
〈Diag(B1)−B,W〉 ,

s.t. 0 �W � I,Tr(W) = k,
(15)

and

Zk+1 = argmin
Z

1

2
‖X−XZ‖2 +

λ

2
‖Z−B‖2 . (16)
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TABLE 2: Clustering errors (%) of different algorithms on the
Hopkins 155 database with the 2F -dimensional data points.

method SCC SSC LRR LSR S3C BDR-B BDR-Z
2 motions

mean 2.46 1.52 3.65 3.24 1.73 1.00 0.95
median 0.00 0.00 0.22 0.00 0.00 0.00 0.00

3 motions
mean 11.00 4.40 9.40 5.94 4.76 1.95 0.85

median 1.63 1.63 3.99 2.05 0.93 0.21 0.21
All

mean 4.39 2.18 4.95 3.85 2.41 1.22 0.93
median 0.00 0.00 0.53 0.45 0.00 0.00 0.00

Second, fix W = Wk+1 and Z = Zk+1, and update B by

Bk+1 = arg min
B

λ

2
‖Z−B‖2 + γ〈Diag(B1)−B,W〉

s.t. diag(B) = 0,B ≥ 0,B = B>. (17)

Note that the above three subproblems are convex and have
closed form solutions. For (15), Wk+1 = UU>, where U ∈
Rn×k consist of k eigenvectors associated with the k smallest
eigenvalues of Diag(B1)−B. For (16), it is obvious that

Zk+1 = (X>X + λI)−1(X>X + λB). (18)

For (17), it is equivalent to

Bk+1 = arg min
B

1

2

∥∥∥B− Z +
γ

λ
(diag(W)1> −W)

∥∥∥
2

s.t. diag(B) = 0,B ≥ 0,B = B>.
(19)

This problem has a closed form solution given as follows.

Proposition 7. Let A ∈ Rn×n. Define Â = A −
Diag(diag(A)). Then the solution to the following problem

min
B

1

2
‖B−A‖2, s.t. diag(B) = 0,B ≥ 0,B = B>, (20)

is given by B∗ =
[
(Â + Â>)/2

]
+

.

The whole procedure of the alternating minimization
solver for (14) is given in Algorithm 1. We denote the objec-
tive of (14) as f(Z,B,W). Let S1 = {B|diag(B) = 0,B ≥
0,B = B>} and S2 = {W|0 � W � I,Tr(W) = k}.
Denote the indicator functions of S1 and S2 as ιS1

(B) and
ιS2

(W), respectively. We give the convergence guarantee of
Algorithm 1 for nonconvex BDR problem.

Proposition 8. The sequence {Wk,Zk,Bk} generated by Al-
gorithm 1 has the following properties:
(1) The objective f(Zk,Bk,Wk) + ιS1

(Bk) + ιS2
(Wk) is

monotonically decreasing. Indeed,

f(Zk+1,Bk+1,Wk+1) + ιS1
(Bk+1) + ιS2

(Wk+1)

≤f(Zk,Bk,Wk) + ιS1
(Bk) + ιS2

(Wk)

− λ

2

∥∥∥Zk+1 − Zk
∥∥∥
2
− λ

2

∥∥∥Bk+1 −Bk
∥∥∥
2

;

(2) Zk+1−Zk → 0, Bk+1−Bk → 0 and Wk+1−Wk → 0;
(3) The sequences {Zk}, {Bk} and {Wk} are bounded.

Theorem 6. The sequence {Wk,Zk,Bk} generated by Al-
gorithm 1 has at least one limit point and any limit point
(Z∗,B∗,W∗) of {Zk,Bk,Wk} is a stationary point of (14).

TABLE 3: Clustering errors (%) of different algorithms on the
Hopkins 155 database with the 4k-dimensional data points by
applying PCA.

method SCC SSC LRR LSR S3C BDR-B BDR-Z
2 motions

mean 3.58 1.83 4.22 3.35 1.81 1.26 1.04
median 0.00 0.00 0.29 0.29 0.00 0.00 0.00

3 motions
mean 7.11 4.40 9.43 6.13 5.01 1.22 1.22

median 0.47 0.56 3.70 2.05 1.06 0.21 0.20
All

mean 4.37 2.41 5.40 3.97 2.53 1.25 1.08
median 00.00 0.00 0.53 0.53 0.00 0.00 0.00

Please refer to the supplementary material for the proof
of the above theorem. Generally, our proposed solver in
Algorithm 1 for the nonconvex BDR model is simple. The
convergence guarantee in Theorem 6 for Algorithm 1 is
practical as there have no unverifiable assumptions.

3.4 Subspace Clustering Algorithm

We give the procedure of BDR for subspace clustering as
previous works [10], [20], [26]. Given the data matrix X, we
obtain the representation matrix Z and B by solving the
proposed BDR problem (13) by Algorithm 1. Both of them
can be used to infer the data clustering. The affinity matrix
can be defined as W = (|Z| + |Z>|)/2 or W = (|B| +
|B>|)/2, and then the traditional spectral clustering [31] is
applied on W to group the data points into k groups. As
will be seen in the experiments, the clustering performance
on Z and B is comparable.

It is worth mentioning that our BDR requires to know the
number of subspaces k when computing the affinity matrix
and using the spectral clustering to achieve the final result.
Such a requirement is necessary for all the spectral-type
subspace clustering methods, e.g., [10], [20], [26], though it
is only used in the spectral clustering step. If the number of
subspaces is not known, some other techniques can be used
for the estimation, e.g., [4], [20]. This work only focuses on
the case that the number of subspaces is known.

4 EXPERIMENTS

In this section, we conduct several experiments on real
datasets to demonstrate the effectiveness of our BDR. The
compared methods include SCC [7], SSC [10], LRR [20],
LSR [26], S3C [19], BDR-B (our BDR model by using B)
and BDR-Z (our BDR model by using Z). For the existing
methods, we use the codes released by the authors. We
test on three datasets: Hopkins 155 database [36] for motion
segmentation, Extended Yale B [18] for face clustering and
MNIST [13] for handwritten digit clustering. For all the com-
pared methods, we tune the parameters (for some methods,
we use the parameters which are given in their codes for
some datasets) and use the ones which achieve the best
results in most cases for each dataset. Note that BDR-B and
BDR-Z use the same parameters3.

3. We will release the codes of our BDR and the used datasets soon.
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Fig. 3: Percentage of sequences for which the clustering error
is less than or equal to a given percentage of misclassification.
Left: 2F -dimensional data. Right: 4n-dimensional data.

For the performance evaluation, we use the usual clus-
tering error defined as follows

clustering error = 1− 1

n

n∑

i=1

δ(pi,map(qi)), (21)

where pi and qi represent the output label and the ground
truth one of the i-th point respectively, δ(x, y) = 1 if x = y,
and δ(x, y) = 0 otherwise, and map(qi) is the best mapping
function that permutes clustering labels to match the ground
truth labels.

4.1 Motion Segmentation
We consider the application of subspace clustering for mo-
tion segmentation. It refers to the problem of segmenting
a video sequence with multiple rigidly moving objects into
multiple spatiotemporal regions that correspond to the dif-
ferent motions in the scene. The coordinates of the points
in trajectories of one moving object form a low dimensional
subspace. Thus, the motion segmentation problem can be
solved via performing subspace clustering on the trajectory
spatial coordinates. We test on the widely used Hopkins
155 database [36]. It consists of 155 video sequences, where
120 of the videos have two motions and 35 of the videos
have three motions. The feature trajectories of each video
can be well modeled as data points that approximately lie
in a union of linear subspaces of dimension at most 4 [10].
Each sequence is a sole dataset (i.e., data matrix X) and so
there are in total 155 subspace clustering tasks.

We consider two settings to construct the data matrix
X for each sequence: (1) use the original 2F -dimensional
feature trajectories, where F is the number of frames of
the video sequence; (2) project the data matrix into 4k-
dimensional subspace, where k is the number of subspaces,
by using PCA. Most of the compared methods are spectral-
type methods, except SCC. For spectral-type methods, they
used different post-processing on the learned affinity ma-
trices when using spectral clustering. We first consider the
same setting as [10] which defines the affinity matrix by
W = (|Z| + |Z>|)/2, where Z is the learned represen-
tation coefficient matrix, and no additional complex post-
processing is performed. In the Hopkins 155 database, there
are 120 videos of two motions and 35 videos of three motion-
s. So we report the mean and median of the clustering errors
of these videos. Table 2 and Table 3 report the clustering er-
rors of applying the compared methods on the dataset when
we use the original 2F -dimensional feature trajectories and

TABLE 4: The mean clustering errors (%) of 155 sequences on
Hopkins 155 dataset by state-of-the-art methods.

LSA [43] SSC [10] LRR [20] LatLRR [22] LSR [26]
4.52 2.18 1.59 0.85 1.71

CASS [23] SMR [14] BD-SSC [11] BD-LRR [11] BDR-Z
1.47 1.13 1.68 0.97 0.93

when we project the data into a 4k-dimensional subspace
using PCA, respectively. Figure 3 gives the percentage of
sequences for which the clustering error is less than or equal
to a given percentage of misclassification. Furthermore,
consider that many subspace clustering methods achieve
state-of-the-art performance on the Hopkins 155 database
by using different techniques for pre-processing and post-
processing. So we give a direct performance comparison of
the subspace clustering methods with their reported settings
on all 155 sequences in Table 4. Based on these results, we
have the following observations:

• From Table 2 and Table 3, it can be seen that our BDR-B
and BDR-Z achieve close performance and both outper-
form the existing methods in both settings, though many
existing methods already perform very well. Consider-
ing that the reported results are the means of the cluster-
ing errors of many sequences, the improvements (from
the existing best result 2.18% to our 0.93% in Table 2
and from the existing best result 2.41% to our 1.08% in
Table 3) by our BDR-B and BDR-Z are significant.

• From Figure 3, it can be seen that there are many more
sequences which are almost correctly segmented by our
BDR-B abd BDR-Z than existing methods. This demon-
strates that the improvements over existing methods by
our methods are achieved on most of the sequences.

• For most methods, the clustering performance using the
2F -dimensional feature trajectories in Table 2 is slightly
better than using the 4k-dimensional PCA projections in
Table 3. This implies that the feature trajectories of k mo-
tions in a video almost perfectly lie in a 4k-dimensional
linear subspace of the 2F -dimensional ambient space.

• From Table 4, it can be seen that our BDR-Z performed
on the 2F -dimensional data points still outperforms
many existing state-of-the-art methods which use vari-
ous post-processing techniques. LatLRR [22] is slightly
better than our method. But it requires much more
complex pre-processing and post-processing, and much
higher computational cost.

4.2 Face Clustering

We consider the face clustering problem, where the goal is
to group the face images into clusters according to their
subjects. It is known that, under the Lambertian assumption,
the face images of a subject with a fixed pose and varying
illumination approximately lie in a linear subspace of di-
mension 9 [2]. So, a collection of face images of k subjects
approximately lie in a union of 9-dimensional subspaces.
Therefore the face clustering problem can be solved by using
subspace clustering methods.

We test on the Extended Yale B database [18]. This
dataset consists of 2,414 frontal face images of 38 subjects



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

TABLE 5: Clustering error (%) of different algorithms on the Extended Yale B database.

2 subjects 3 subjects 5 subjects 8 subjects 10 subjects
method mean median std mean median std mean median std mean median std mean median std

SCC 24.02 19.92 17.82 42.19 41.93 8.93 61.36 62.34 6.10 71.87 72.27 4.72 72.48 73.28 6.14
SSC 1.64 0.78 2.91 3.26 0.52 7.69 6.30 4.22 5.43 8.94 9.67 6.18 10.09 11.33 4.59
LRR 5.39 0.39 14.50 6.04 1.04 12.34 8.13 2.34 9.61 6.79 3.42 6.50 9.49 12.58 5.38
LSR 3.16 0.78 10.18 3.96 1.56 8.72 7.85 6.72 8.72 28.14 31.05 12.32 33.27 33.12 4.57
S3C 1.29 0.00 2.69 2.79 0.52 7.38 4.66 1.88 5.15 6.37 6.35 5.32 6.87 6.17 3.67

BDR-B 3.28 0.78 10.15 3.02 1.30 7.78 4.45 2.19 6.29 3.08 2.93 1.18 2.95 2.81 1.09
BDR-Z 2.97 0.00 10.23 1.15 1.04 0.95 3.00 2.66 2.25 4.46 4.20 2.39 4.04 3.52 1.52
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Fig. 4: Average computational time (sec.) of the algorithms on
the Extended Yale B database as a function of the number of
subjects.

under 9 poses and 64 illumination conditions. For each sub-
ject, there are 64 images. Each cropped face image consists
of 192×168 pixels. To reduce the computation and memory
cost, we downsample each image to 32 × 32 pixels and
vectorize it to a 1,024 vector as a data point. Each data
point is normalized to have a unit length. We then construct
the data matrix X from subsets which consist of different
numbers of subjects k ∈ {2, 3, 5, 8, 10} from the Extended
Yale B database. For each k, we randomly sample k subjects
face images from all 38 subjects to construct the data matrix
X ∈ RD×n, where D = 1024 and n = 64k. Then the
subspace clustering methods can be performed on X and
the clustering error is recorded. We run 20 trials and the
mean, median, and standard variance of clustering errors
are reported.

The clustering errors by different subspace clustering
methods on the Extended Yale B database are shown in
Table 5. It can be seen that our BDR-B and BDR-Z achieve
similar performance and both outperform other methods
in most cases. Generally, when the number of subjects (or
subspaces) increases, the clustering problem is more chal-
lenging. We find that the improvements by our methods
are more significant when the number of subjects increases.
This experiment clearly demonstrates the effectiveness of
our BDR for the challenging face clustering task on the
Extended Yale B database. S3C [19] is an improved SSC
method and it also performs well in some cases. However, it
needs to tune more parameters in order to achieve compa-
rable performance and it is very time consuming. Figure 4
provides the average computational time of each method as
a function of the number of subjects. It can be seen that S3C
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Fig. 5: Clustering error (%) of BDR-Z as a function of λ when
fixing γ = 1 (left) and γ when fixing λ = 50 (right) for the 10
subjects problems from the Extended Yale B database.

has the most highest computational time, while LSR, which
has a closed form solution, is the most efficient method. Our
BDR-B (BDR-Z has as similar running time and thus is not
reported) is faster than most methods except LSR (LSR is
much faster than BDR). So our BDR is the best choice when
considering the trade-off between the performance and
computational cost. Furthermore, we consider the influence
of the parameters λ and γ on the clustering performance. On
this dataset, we observe that λ = 50 and γ = 1 perform well
in most cases. We report the average clustering error on the
10 subjects problem based on two settings: (1) fix γ = 1 and
choose λ ∈ {10, 20, 30, 40, 50, 60, 70}; (2) fix λ = 50 and
choose γ ∈ {0.001, 0.01, 0.1, 0.5, 1, 2, 3, 5, 10, 50}. The re-
sults are shown in Figure 5. It can be seen that the clustering
error increases when λ and γ are relatively too small or too
large. The reason for the performance degeneration in the
“too small” case is that the regularization effect is relatively
weak. On the other hand, if λ and γ are relatively large, Z
and B in the early iterations are not discriminative due to
relatively large loss ‖X−XZ‖2. This issue may accumulate
till the algorithm converges due to the nonconvexity of the
problem and the non-optimal solution guarantee issue of
our solver.

4.3 Handwritten Digit Clustering

We consider the application of subspace clustering for clus-
tering images of handwritten digits which also have the
subspace structure of dimension 12 [13]. We test on the
MNIST database [17]4, which contains grey scale images of
handwritten digits 0 ∼ 9. There are 10 subjects of digits.
We consider the clustering problems with the number of
subjects k varying from 2 to 10. For each k, we run the

4. We use the version at https://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets/.
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Fig. 6: Results on the MNIST database. (a) Plots of clustering errors v.s. the number of subjects; (b) Plots of average computational
time (sec.) v.s. the number of subjects; (c) Plots of the objective function value of (14) v.s. iterations on a 5 subjects subset.

experiments for 20 trials and report the mean clustering
error. For each trial and each k, we consider random k
subjects of digits from 0 ∼ 9, and each subject has 100
randomly sampled images. Each grey image is of size 28×28
and is vectorized as a vector of length 784. Each data point
is normalized to have a unit length. So for each k, we have
the data matrix of size 784× 100k.

Figure 6 (a) plots the clustering errors as a function of the
number of subjects on the MNIST database. It can be seen
that our BDR-B and BDR-Z achieve the smallest clustering
errors in most cases, though the improvements over the
best compared method are different on different numbers
of subjects. Figure 6 (b) gives a comparison on the average
running time and it can be seen that our BDR-B (similar to
BDR-Z) is much more efficient than most methods except
LSR. The clustering performance of SSC and S3C is close
to our BDR-B in some cases, but their computational cost is
much higher than ours. So this experiment demonstrates the
effectiveness and high-efficiency of our BDR. Furthermore,
to verify our theoretical convergence results, we plot of the
objective function value of (14) in each iteration obtained
in Algorithm 1 for all iterations on a 5 subjects subset of
the MNIST database in Figure 6 (c). It can be seen that
the objective function value is monotonically decreasing
and this phenomenon is consistent with our convergence
analysis in Proposition 8.

5 CONCLUSION AND FUTURE WORKS

This paper studies the subspace clustering problem which
aims to group the data points approximately drawn from
a union of k subspaces into k clusters corresponding to
their underlying subspaces. We observe that many existing
spectral-type subspace clustering methods own the same
block diagonal property under certain subspace assump-
tion. We consider a general problem and show that if the
objective satisfies the proposed Enforced Block Diagonal
(EBD) conditions or its solution is unique, then the solu-
tion(s) obey the block diagonal property. This unified view
provides insights into the relationship among the block
diagonal property of the solution and the used objectives, as
well as to facilitate the design of new algorithms. Inspired
by the block diagonal property, we propose the first k-block

diagonal regularizer which is useful for encouraging the
matrix to be k-block diagonal. This leads to the Block Diag-
onal Representation (BDR) method for subspace clustering.
A disadvantage of the BDR model is that it is nonconvex
due to the k-block diagonal regularizer. We propose to solve
the BDR model by a simple and generally efficient method
and more importantly we provide the convergence guaran-
tee without restrictive assumptions. Numerical experiments
well demonstrate the effectiveness of our BDR.

There are many potential interesting future works:
1. The problem of the affinity matrix construction is not

limited to the subspace clustering (or spectral clustering),
but is everywhere and appears in many applications, e.g.,
[44], [46], [33]. The proposed k-block diagonal regularizer
provides a new learning way and it is natural to consider
the extension to related applications.

2. Beyond the sparse vector, low-rank matrix, the block
diagonal matrix is another interesting structure of struc-
tured sparsity. The sparsity of the sparse vector is defined
on the entries while the sparsity of the low-rank matrix is
defined on the singular values. For the block diagonal
matrix, its sparsity can be defined on the eigenvalues
of the Laplacian matrix. So we can say that a block
diagonal affinity matrix is spectral sparse if there have
many connected blocks. This perspective motivates us to
consider the statistical recovery guarantee of the block
diagonal matrix regularized or constrained problems as
that in compressive sensing.

3. The proposed k-block diagonal regularizer is nonconvex
and this makes the optimization of the problem with such
a regularizer challenging. Our proposed solver and con-
vergence guarantee are specific for the nonconstrained
BDR problem. How to solve the related problems but
with a linear constraint and provide the convergence
guarantee is interesting. The general Alternating Direc-
tion Method of Multipliers [24] is a potential solver.
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Supplementary Material
This document gives the proofs of some propositions and theorems. We continue the number of equations, propositions

and theorems in the main submission of the paper. Please read the main submission together with this document.

APPENDIX A
PROOFS OF THE BLOCK DIAGONAL PROPERTY

A.1 Proof of Proposition 1

Proof. The result is obvious by using the definitions of EBD conditions.

A.2 Proof of Proposition 2

Proof. We are given the function f(Z,X) =
∑
ij gij(zij) which is separable w.r.t. each entry zij of Z. First, for any

permutation matrix P, P>ZP keeps the same entries in Z but rearranges their positions. Both P>ZP and Z have the same
entries. So the separability of f guarantees that the EBD condition (1) holds. The EBD condition (2) also holds since it is
equivalent to the given assumptions that gij(zij) ≥ 0, gij(zij) = 0 if and only if zij = 0 for all i and j. The EBD condition
(3) naturally holds due to the separability of f .

A.3 Proof of Proposition 3

Proof. We are given the function f(Z,X) =
∑
j gj([Z]:,j ,X) which is separable w.r.t. each column [Z]:,j of Z. First, we

verify the EBD condition (1). For any permutation matrix P, we have

f(P>ZP,XP) =
∑

j

gj([P
>ZP]:,j ,XP)

=
∑

j

gj(P
>[ZP]:,j ,XP) (22)

=
∑

j

gj(P
>[Z]:,j ,XP) (23)

=
∑

j

gj([Z]:,j ,X) (24)

=f(Z,X),

where (22) uses the simple property [AB]:,j = A[B]:,j , (23) uses that fact that AP reorders the columns of the matrix A
and keeps the column entries, and (24) uses the given assumption gj(w,X) = gj(P

>w,XP). This means that the EBD
condition (1) holds.

Second, to verify the EBD condition (2), we deduce

f(Z,X) =
∑

j

gj([Z]:,j ,X) ≥
∑

j

gj([Z
B ]:,j ,X) = f(ZB ,X), (25)

where we use the given assumption gj(w,X) ≥ gj(w
B ,X). Note that it is further assumed that the equality holds if and

only if w = wB . This is implies that the equality in (25) holds if and only if Z = ZB . Thus, the EBD condition (2) holds.
Third, to verify the EBD condition (3), we deduce

f(ZB ,X) =
∑

j

gj([Z
B ]:,j ,X)

=
∑

k

gk



[
Z1

0

]

:,k

,X


+

∑

l

gl



[

0

Z2

]

:,l

,X


 (26)

=
∑

k

gk([Z1]:,k,X1) +
∑

l

gl([Z2]:,l,X2) (27)

=f(Z1,X1) + f(Z2,X2),

where (26) uses the definition of ZB in the EBD conditions, and (27) uses the given assumption gj(wB ,X) = gj(w1,X1).
Thus, the EBD condition (3) holds.
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A.4 Proof of Proposition 4

Proof. We are given the function f(Z,X) =
∑
i gi([Z]i,:,X) which is separable w.r.t. each row [Z]i,: of Z. First, we verify

the EBD condition (1). For any permutation matrix P, we have

f(P>ZP,XP) =
∑

i

gi([P
>ZP]i,:,XP)

=
∑

i

gi([ZP]i,:,XP) (28)

=
∑

i

gi(([Z]i,:)P,XP) (29)

=
∑

i

gi([Z]i,:,X) (30)

=f(Z,X),

where (28) uses the fact that P>A reorders the rows of the matrix A and keeps the row entries, (29) uses the simple
property [AB]i,: = [Ai,:]B, and (30) uses the given assumption gi(w

>,X) = gi(w
>P,XP). This means that the EBD

condition (1) holds.
Second, to verify the EBD condition (2), we deduce

f(Z,X) =
∑

i

gi([Z]i,:,X) ≥
∑

i

gi([Z
B ]i,:,X) = f(ZB ,X), (31)

where we use the given assumption gi(w
>,X) ≥ gi((w

B)>,X). Note that it is further assumed that the equality holds
if and only if w = wB . This is implies that the equality in (31) holds if and only if Z = ZB . Thus, the EBD condition (2)
holds.

Third, to verify the EBD condition (3), we deduce

f(ZB ,X) =
∑

i

gi([Z
B ]i,:,X)

=
∑

k

gk ([Z1, 0]k,:,X) +
∑

l

gl ([0,Z2]l,:,X) (32)

=
∑

k

gk([Z1]k,:,X1) +
∑

l

gl([Z2]l,:,X2) (33)

=f(Z1,X1) + f(Z2,X2),

where (32) uses the definition of ZB in the EBD conditions, and (33) uses the given assumption gi((w
B)>,X) =

gi(w
>
1 ,X1). Thus, the EBD condition (3) holds.

A.5 Proof of Proposition 5

Proof. We are given a series of functions fi’s which satisfy the EBD conditions (1)-(3). It is easy to verify that their positive
combination, i.e., λifi, where λi > 0, still satisfies the EBD conditions (1)-(3) by directly using the definitions of EBD
conditions.

A.6 Proof of Proposition 6

Proof. We are given a function f1 which satisfies the EBD conditions (1)-(3) and a function f2 which satisfies the EBD
conditions (1)(3) and the first part of EBD condition (2). It is obvious that the EBD conditions (1)(3) and the first part of (2)
holds for f = f1 + f2 by directly using the definitions of EBD conditions. For the second part of the EBD condition (2), it
is easy to see that it still holds for f since f1 satisfies the EBD condition (2) and f2 satisfies the first part of EBD condition
(2).

A.7 Proof of Theorem 2

Proof. First, ‖Z‖0, ‖Z‖1, ‖Z‖2, ‖Z‖1 + λ ‖Z‖2, and
∑
ij λij |zij |pij are separable w.r.t. zij ’s. By Proposition 2, the EBD

conditions (1)-(3) hold for these functions. The EBD conditions for ‖Z‖1 + λ ‖Z‖2 can also be verified by using Proposition
5.

Second, we prove that the EBD conditions hold for the `2,1-norm ‖Z‖2,1 and trace Lasso
∑
j ‖XDiag([Z]:,j)‖∗ by using

Proposition 3. Consider ‖Z‖2,1 =
∑
j g([Z]:,j), where g is the `2-norm. It is obvious that the `2-norm satisfies all the three

conditions in Proposition 3, and thus the result holds for ‖Z‖2,1. Consider
∑
j ‖XDiag([Z]:,j)‖∗ =

∑
j g([Z]:,j ,X), where
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g(w,X) = ‖XDiag(w)‖∗ is the trace Lasso. Now, we verify the conditions in Proposition 3 for trace Lasso. For the first
condition, consider any permutation matrix P of proper size, we have

g(P>w,XP) =
∥∥∥XPDiag(P>w)

∥∥∥
∗

=
∥∥∥XPP>Diag(w)

∥∥∥
∗

= ‖XDiag(w)‖∗ = g(w,X),

where we use the fact that the permutation matrix is orthogonal. For the second condition, we partition X = [X1,X2]
according to w = [w1;w2]. We have

g(w,X) = ‖XDiag(w)‖∗ = ‖[X1Diag(w1) X2Diag(w2)]‖∗ ≥ ‖[X1Diag(w1) 0]‖∗ =
∥∥∥XDiag(wB)

∥∥∥
∗

= g(wB ,X), (34)

where the inequality is obtained by using Lemma 11 in [32] and note that the equality holds if and only if X2Diag(w2) = 0.
This is equivalent to w2 = 0 or w = wB since [X]:,j 6= 0 for all j. The third condition in Proposition 3 is given by the last
second equation of (34). Thus, by Proposition 3, the EBD conditions hold for

∑
j ‖XDiag([Z]:,j)‖∗.

Third, the `1,2-norm ‖Z‖1,2 is row separable. It is easy to verify that it satisfies all the three conditions in Proposition 4
and thus it satisfies the EBD conditions.

Fourth, we show that the EBD conditions hold for the `1+nuclear norm ‖Z‖1 +λ ‖Z‖∗ by using Proposition 6. We know
that ‖Z‖1 satisfies the EBD conditions (1)-(3). For ‖Z‖∗, it is obvious that ‖Z‖∗ =

∥∥P>ZP
∥∥
∗ for any permutation matrix P

which is orthogonal. Also, by Lemma 7.4 in [21], we have
∥∥∥∥∥

[
Z1 Z3

Z4 Z2

]∥∥∥∥∥
∗
≥
∥∥∥∥∥

[
Z1 0

0 Z2

]∥∥∥∥∥
∗

= ‖Z1‖∗ + ‖Z2‖∗ .

Thus, the EBD conditions (1)(3) and the first part of EBD condition (2) hold for ‖Z‖∗. Hence, the three EBD conditions hold
for ‖Z‖1 + λ ‖Z‖∗ with λ > 0 by using Proposition 6.

At last, we show that the EBD conditions hold for
∥∥Z>Z

∥∥
1

when Z ≥ 0. For any permutation matrix P, we have
∥∥∥(P>ZP)>(P>ZP)

∥∥∥
1

=
∥∥∥P>ZPP>ZP

∥∥∥
1

=
∥∥∥P>Z>ZP

∥∥∥
1

=
∥∥∥Z>Z

∥∥∥
1
,

where the last equation uses the fact that P>Z>ZP has the same entries as Z>Z, though the positions are different. Thus,
the EBD condition (1) holds. For EBD condition (2), we decompose Z = ZB + ZC , where

Z =

[
Z1 Z3

Z4 Z2

]
, ZB =

[
Z1 0

0 Z2

]
, ZC =

[
0 Z3

Z4 0

]
.

Then we have ∥∥∥Z>Z
∥∥∥
1

=
∥∥∥(ZB + ZC)>(ZB + ZC)

∥∥∥
1

=
∥∥∥(ZB)>ZB + (ZC)>ZC + (ZB)>ZC + (ZC)>ZB

∥∥∥
1

≥
∥∥∥(ZB)>ZB

∥∥∥
1
,

where the inequality uses Z ≥ 0. Also, the inequality holds if and only if ZC = 0 or Z = ZB . Thus, the EBD condition (2)
holds. The EBD condition (3) also holds since

∥∥∥(ZB)>ZB
∥∥∥
1

=
∥∥∥(Z1)>Z1

∥∥∥
1

+
∥∥∥(Z2)>Z2

∥∥∥
1
.

The proof is completed.

APPENDIX B
PROOFS OF THE CONVERGENCE OF ALGORITHM 1
B.1 Proof of Proposition 7
Proof. It is obvious that problem (20) is equivalent to

min
B

1

2
‖B− Â‖2, s.t. B ≥ 0,B = B>. (35)

The constraint B = B> suggests that ‖B− Â‖2 = ‖B− Â>‖2. Thus

1

2
‖B− Â‖2 =

1

4
‖B− Â‖2 +

1

4
‖B− Â>‖2 =

1

2

∥∥∥B− (Â + Â>)/2
∥∥∥
2

+ c(Â),

where c(Â) only depends on Â. Hence (35) is equivalent to

min
B

1

2

∥∥∥B− (Â + Â>)/2
∥∥∥
2
, s.t. B ≥ 0,B = B>,

which has the solution B∗ =
[
(Â + Â>)/2

]
+

.
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B.2 Proof of Proposition 8
Proof. First, from the optimality of Wk+1 to (15), we have

f(Zk,Bk,Wk+1) + ιS2(Wk+1) ≤ f(Zk,Bk,Wk) + ιS2(Wk). (36)

Second, from the updating rule of Zk+1 in (16), we have

Zk+1 = arg min
Z

f(Z,Bk,Wk+1).

Note that f(Z,Bk,Wk+1) is λ-strongly convex. We have

f(Zk+1,Bk,Wk+1) ≤ f(Zk,Bk,Wk+1)− λ

2

∥∥∥Zk+1 − Zk
∥∥∥
2
, (37)

where we use the Lemma B.5 in [29]. Third, from the updating rule of Bk+1 in (19), we have

Bk+1 = arg min
B

f(Zk+1,B,Wk+1) + ιS1
(B).

Note that f(Zk+1,B,Wk+1) + ιS1
(B) is λ-strongly convex w.r.t. B. We have

f(Zk+1,Bk+1,Wk+1) + ιS1(Bk+1) ≤ f(Zk+1,Bk,Wk+1) + ιS1(Bk)− λ

2

∥∥∥Bk+1 −Bk
∥∥∥
2
.

Combining (36)-(38), we have

f(Zk+1,Bk+1,Wk+1) + ιS1
(Bk+1) + ιS2

(Wk+1)

≤f(Zk,Bk,Wk) + ιS1
(Bk) + ιS2

(Wk)− λ

2

∥∥∥Bk+1 −Bk
∥∥∥
2
− λ

2

∥∥∥Zk+1 − Zk
∥∥∥
2
.

(38)

Hence, f(Zk,Bk,Wk) + ιS1(Bk) + ιS2(Wk) is monotonically decreasing and thus it is upper bounded. This implies that
{Zk} and {Bk} are bounded. Also, Wk ∈ S2 implies that

∥∥Wk
∥∥
2
≤ 1 and thus {Wk} is bounded.

Note that Wk and Diag(Bk1) − Bk are positive semi-definite. We have 〈Diag(Bk1) − Bk,Wk〉 ≥ 0. Thus
f(Zk,Bk,Wk) + ιS1(Bk) + ιS2(Wk) ≥ 0. Now, summing (38) over k = 0, 1, · · · we have

+∞∑

k=0

λ

2

(∥∥∥Bk+1 −Bk
∥∥∥
2

+
∥∥∥Zk+1 − Zk

∥∥∥
2
)
≤ f(Z0,B0,W0).

This implies
Bk+1 −Bk → 0, (39)

and
Zk+1 − Zk → 0. (40)

By (39) and the updating of Wk+1 in (15), we have

Wk+1 −Wk → 0. (41)

The proof is completed.

B.3 Proof of Theorem 6
Proof. Now, from the boundedness of {Zk,Bk,Wk}, there exists a point (Z∗,B∗,W∗) and a subsequence {Zkj ,Bkj ,Wkj}
such that Zkj → Z∗, Bkj → B∗, and Wkj →W∗. Then by (39)-(41), we have Zkj+1 → Z∗, Bkj+1 → B∗ and Wkj+1 →
W∗. On the other hand, from the optimality of Wkj+1 to (15), Zkj+1 to (16) and Bkj+1 to (17), we have

0 ∈ ∇fW(Zkj ,Bkj ,Wkj+1) + ∂WιS2(Wkj+1), (42)

0 ∈ ∇fZ(Zkj+1,Bkj ,Wkj+1), (43)

0 ∈ ∇fB(Zkj+1,Bkj+1,Wkj+1) + ∂BιS1
(Bkj+1). (44)

Let k → +∞ in (42)-(44). We have

0 ∈ ∇fW(Z∗,B∗,W∗) + ∂WιS2(W∗),

0 ∈ ∇fZ(Z∗,B∗,W∗),

0 ∈ ∇fB(Z∗,B∗,W∗) + ∂BιS1(B∗).

Thus (Z∗,B∗,W∗) is a stationary point of (14).


