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Tensor Factorization for Low-Rank
Tensor Completion

Pan Zhou, Canyi Lu , Student Member, IEEE, Zhouchen Lin , Senior Member, IEEE,
and Chao Zhang, Member, IEEE

Abstract— Recently, a tensor nuclear norm (TNN) based
method was proposed to solve the tensor completion problem,
which has achieved state-of-the-art performance on image and
video inpainting tasks. However, it requires computing tensor
singular value decomposition (t-SVD), which costs much compu-
tation and thus cannot efficiently handle tensor data, due to its
natural large scale. Motivated by TNN, we propose a novel low-
rank tensor factorization method for efficiently solving the 3-way
tensor completion problem. Our method preserves the low-rank
structure of a tensor by factorizing it into the product of two
tensors of smaller sizes. In the optimization process, our method
only needs to update two smaller tensors, which can be more
efficiently conducted than computing t-SVD. Furthermore, we
prove that the proposed alternating minimization algorithm can
converge to a Karush–Kuhn–Tucker point. Experimental results
on the synthetic data recovery, image and video inpainting tasks
clearly demonstrate the superior performance and efficiency of
our developed method over state-of-the-arts including the TNN
and matricization methods.

Index Terms— Tensor factorization, tensor completion, low-
rank factorization.

I. INTRODUCTION

ATENSOR is a multi-dimensional array of numbers which
is the multi-way (higher-order) generalization of vec-

tors and matrices, thus can express more complex intrinsic
structures of higher-order data. Actually, a tensor is a natural
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form of high-dimensional and multi-way real world data.
For example, a color image can be regarded as a 3-way
tensor due to its three channels; a grey scale video can
also be viewed as a 3-way tensor indexed by two spatial
variables and one temporal variable. So tensor analysis is
of practical significance and benefits many applications in
computer vision [2], [6], [7], data mining [8], collaborative
filtering [9], etc. Low-rank tensor completion is one of the
most important problems in tensor processing and analysis.
It aims at filling in the missing entries of a partially observed
low-rank tensor. Recent research [2], [3], [6], [7], [10]–[13]
shows that high dimensional tensor data of interest, such
as videos and image collections, are usually intrinsically
low-rank or approximately so. Subsequently, many works
utilize this property to recover tensors of incomplete
observations [14]–[16] and apply it to real applications,
e.g. hyperspectral data recovery [6], [7], [12], image/video
inpainting [1]–[3], text analysis [17], [18], and multitask
learning [19], etc.

The low-rank tensor completion problem can be regarded as
an extension of the low-rank matrix completion problem [20]
which aims at exactly recovering a low-rank matrix from an
incomplete observation. Since the matrices of interest, e.g.
images [13], [20], are usually known to be (approximately)
low-rank, the matrix completion method minimizes the matrix
rank to depict the low-rank structure of the data. Accordingly,
its mathematical model is written as

min
C

rank(C), s.t. P�(C − M) = 0, (1)

where the set � of locationscorresponds to the observed
entries, or more concretely, if Mi j is observed, then (i, j) ∈ �.
P� is a linear operator that extracts entries in � and fills
the entries not in � with zeros. The rank(·) is the matrix
rank function. However, as directly optimizing problem (1)
is NP-hard, many methods [20]–[22] approximate the rank
function rank(C) by its convex surrogate, i.e. the nuclear
norm �C�∗. Indeed, this approximation has performance
guarantee. Candès and Recht [20] proved that under certain
incoherence conditions, the rank-r matrix M ∈ R

n×n with
O(n1.2r log n) observations can be recovered with high
probability by minimizing the matrix nuclear norm. Then
Chen [23] improved the sample complexity of recovering
a semidefinite matrix to O(nr log2 n). But these nuclear
norm minimization methods require computing singular
value decomposition (SVD) of matrix data, which is very
computationally expensive. To resolve this issue, the low-rank
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matrix factorization methods [24]–[26] have been proposed.
They depict the low-rank structure of a matrix by factorizing it
into the product of two smaller matrices and avoid computing
SVD, thus are more efficient. Besides, by directly restricting
the rank of the estimation, the low-rank factorization methods
can also well recover the low-rank data and achieve state-
of-the-art completion results in image/video inpainting [25],
[27], [28], and collaborative filtering [26], [29].

It seems natural to directly extend matrix completion
methods to the tensor completion problem. However, this
is not suitable, as the numerical algebra of tensors
is fraught with hardness results [16]. For instance, the
CANDECOMP/PARAFAC (CP) rank [30] of a tensor C ∈
R

n1×n2×···×nk which is defined as the minimum number of
rank one decomposition, i.e.

rankcp(C) = min{r | C =
r∑

i=1

a(i)
1 ⊗ a(i)

2 ⊗ · · · ⊗ a(i)
k }, (2)

where the symbol ⊗ denotes the outer product and
a(i)

j ∈ R
n j (∀(i, j)) is a vector, is generally NP-hard to

compute [16], [31], [32]. To resolve this issue, other tensor
rank definitions [14], [33] have been proposed, leading to dif-
ferent low-rank tensor completion methods [1], [5], [13], [34].

Matricization, a.k.a. unfolding or flattening, is the
commonly used approach to solve the tensor completion prob-
lem [13]. It unfolds the tensor data into matrices and applies
matrix completion methods, e.g. the matrix nuclear norm based
methods [20]–[22] or the matrix factorization
methods [24]–[26], to recover the low-rank tensor. The
Tucker rank [14] defined on the unfolded matrices to depict
the rank of a tensor is the basic of matricization methods,
formulated as

ranktc(C) = (
rank(C(1)), · · ·, rank(C(i)), · · ·, rank(C(k))

)
, (3)

where C is a k-way tensor and C(i) is its mode-i matricization.
Based on Tucker rank, Kasai and Mishra [5] further con-
sidered data structure and proposed a Riemannian manifold
based tensor completion method (RMTC). Furthermore, as the
minimizing rank function is complex due to its combinational
nature [25], in [2], [7], and [35], the authors used the sum
of the nuclear norm (SNN)

∑k
i=1 �C(i)�∗ to approximate the

rank of the tensor and the completion model is formulated as

min
C

k∑

i=1

�C(i)�∗, s.t. P�(C − M) = 0. (4)

But Romera-Paredes and Pontil [4] proved that SNN is not a
tight convex relaxation of

∑k
i=1 rank(C(i)) and presented an

alternative convex relaxation, i.e. TenALS which is tighter than
SNN. Moreover, the nuclear norm minimization problem (4) is
generally solved iteratively in which SVD is involved at each
iteration. So these nuclear norm minimization methods suffer
from high computational cost of multiple SVDs. To efficiently
handle large scale data, Xu et al. [3] utilized the matrix
factorization method to preserve the low-rank structure of the
unfolded matrices, i.e. factorizing each mode matricization

C(i) into the product of two smaller matrices X i and Y i :

min
{Xi },{Yi },C

k∑

i=1

αi�X i Y i −C(i)�∗, s.t. P�(C−M)=0, (5)

where αi is a positive weight parameter which satisfies∑k
i=1 αi = 1. This approach has been widely applied to

various applications [10], [11]. However, as pointed out
by [32], [33], [36], and [37], directly unfolding a tensor would
destroy the original multi-way structure of the data, leading
to vital information loss and degraded performance. Besides,
matricization methods unfold a k-way tensor into k matrices
among which each has the same number of entries as the
tensor, and then recover each unfolded matrix and combine
them into a tensor at each iteration, thus may be inefficient,
as the number of entries of a tensor is usually very large.

Recently, based on the tensor-tensor product (t-product)
and tensor singular value decomposition (t-SVD) [36]–[38],
Kilmer et al. [33] proposed the tensor multi-rank and tubal
rank definitions and Semerci et al. [34] developed a new tensor
nuclear norm (TNN). Subsequently, Zhang et al. applied TNN
to tensor completion [1], with state-of-the-art video inpainting
results achieved, and further analyzed the exact completion
conditions of the proposed model in [39]. Since t-SVD is
based on an operator theoretic interpretation of 3-way tensors
as linear operators on the space of oriented matrices, the tensor
multi-rank and tubal rank can well characterize the inherent
low-rank structure of a tensor while avoiding the loss of
information inherent in matricization of the tensor [32], [33],
[36], [37]. But TNN still requires computing t-SVD, which is
very time consuming when the data scale is large.

In this paper, we propose a novel low-rank tensor factoriza-
tion method to solve the 3-way tensor completion problem.
Similar to TNN [1], our method is also based upon the
tensor multi-rank and tubal rank definitions. But instead of
using the tensor nuclear norm, we factorize the low-tubal-
rank tensor C ∈ R

n1×n2×n3 into the product of two ten-
sors X ∈ R

n1×r×n3 and Y ∈ R
r×n2×n3 of smaller sizes,

where r is the tubal rank of C and is usually much smaller
than min (n1, n2). See the definition of tensor tubal rank in
Definition 6. This factorization has performance guarantee,
since by Lemma 2, a low-tubal-rank tensor can be factor-
ized into the product of two tensors of much smaller sizes.
In this way, we can characterize the low-rank property of
the tensor C and recover it. Since our low-rank factorization
method avoids computing t-SVD, the computational cost at
each iteration is O (r(n1 + n2)n3 log n3 + rn1n2n3) and much
more efficient than TNN [1] whose computational complex-
ity is O (n1n2n3 log n3 + n1n2n3 min(n1, n2)). Compared with
matricization based tensor completion methods, our method is
based upon the tensor multi-rank and tubal rank and avoids
losing the low-rank structure information. Experimental results
also confirm this point. We also propose a rank-decreasing
method to estimate the true tensor rank of a tensor whose
effectiveness is verified by experimental results (see Fig. 3).
At each iteration, once a dramatic change in the estimated
rank of the variable X is detected by the QR decomposition,
we use PCA [40] to adjust the sizes of X and Y so that
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they can well reconstruct the original tensor. Finally, we
present an efficient optimization method to solve our model
and further prove its convergence. When we develop this
method, based on tensor tubal rank and tensor nuclear norm,
Liu et al. [41] also proposed a tensor factorization method for
tensor completion, which is called “Tubal-Alt-Min". But these
two concurrent methods essentially differ from each other due
to the very different optimization algorithms and rank estima-
tion strategies. See Sec. III-E for more detailed discussions on
these differences. In summary, our main contributions include:

(1) We propose an efficient low-rank tensor factorization
method for tensor completion problem. Our method
characterizes the low-tubal-rank structure of a tensor by
factorizing it into the product of two tensors of smaller
sizes and only needs to update two smaller tensors at
each iteration. In each iteration, the complexity of our
method is O (r(n1 + n2)n3 log n3 +rn1n2n3). Such a
computational cost is much lower than TNN [1] which
requires computing tensor SVD with the complexity
O (n1n2n3 (min(n1, n2) + log n3)). It is obvious that our
method is much more efficient than TNN.

(2) We propose an adaptive method to estimate the tensor
tubal rank in each iteration. By detecting the dramatic
change of the rank of one factorization variable X , we
use PCA to decrease the sizes of the two factorization
variables X and Y so that they can well reconstruct
the original tensor. The validity of this rank estimation
method is verified by the experimental results.

(3) We prove that the proposed alternating minimization
algorithm can converge to a Karush-Kuhn-Tucker point.

Experimental results on synthetic data completion and
image/video inpainting tasks verify the advantages of our
method.

II. NOTATIONS AND PRELIMINARIES

In this section we first summarize some main notations and
then introduce some definitions and a lemma used later.

A. Notations

We use boldface Calligraphy letters, e.g. A, and boldface
capital letters, e.g. A, to denote tensors and matrices, respec-
tively. We use boldface lowercase letters, e.g. a, to represent
vectors, and lowercase letters, e.g. a, to denote scalars. For
a tensor A, we use the Matlab notation A(i, :, :), A(:, i, :)
and A(:, :, i) to denote its i -th horizontal, lateral and frontal
slice, respectively. For brevity, let A(i) = A(:, :, i). Ai j k

denote the (i, j, k)-th entry of A. The Frobenius norm is
defined as �A�F =

√∑
i j k |Ai j k |2. �A�∞ represents the

maximum absolute value in A. A∗ and A† represent the
conjugate transpose and the pseudo-inverse of A, respectively.
In represents the identity matrix of size n × n.

Next, we introduce the Discrete Fourier Transformation
(DFT), which plays a core role in tensor-tensor product
introduced later. Let Ā ∈ C

n1×n2×n3 represent the result of
Discrete Fourier transformation (DFT) of A ∈ R

n1×n2×n3

along the 3rd dimension. Define the DFT matrix:

Fn3 = [ f1, · · · , fi , · · · , fn3] ∈ R
n3×n3 ,

where fi = [ω0×(i−1); ω1×(i−1); · · · ; ω(n3−1)×(i−1)] ∈ R
n3

in which ω = e−(2πb/n3) and b = √−1. Then we have
Ā(i, j, :) = Fn3A(i, j, :). Indeed, we can compute Ā directly
by the Matlab command Ā = fft(A, [], 3) and use the
inverse DFT to obtain A = ifft(Ā, [], 3). We further define
Ā ∈ C

n1n3×n2n3 as

Ā = bdiag(Ā) =

⎡
⎢⎢⎢⎣

Ā(1)

Ā(2)

. . .

Ā(n3)

⎤
⎥⎥⎥⎦ , (6)

where bdiag(·) is an operator which maps the tensor Ā to the
block diagonal matrix Ā. We further define the block circulant
matrix bcirc(A) ∈ R

n1n3×n2n3 of A as

bcirc(A) =

⎡

⎢⎢⎢⎣

A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

⎤

⎥⎥⎥⎦ . (7)

The definitions of Ā and bcirc(A) are the basis of tensor
rank and nuclear norm that will be introduced subsequently.

B. Basic Knowledge

We first introduce t-product between two 3-way tensors.
Definition 1 (T-Product [36]): The t-product between A ∈

R
n1×n2×n3 and B ∈ R

n2×n4×n3 is defined as A ∗ B =
fold(bcirc(A) · unfold(B)) ∈ R

n1×n4×n3 , where
unfold(A) = [A(1); A(2); · · · ; A(n3)] ∈ R

n1n3×n2

and its inverse operator fold is defined as fold
(unfold(A)) = A.

Indeed, t-product is equivalent to the matrix multiplication
in the Fourier domain, i.e. F = A ∗ B and F̄ = ĀB̄ are
equivalent [36] (also see Lemma 1). Based on the definition
of t-product, we introduce the definition of t-SVD. Before that,
we also need some other concepts.

Definition 2 (F-Diagonal Tensor [36]): A tensor is called
f-diagonal if each of its frontal slices is a diagonal matrix.

Definition 3 (Conjugate Transpose [36]): The conjugate
transpose of a tensor A ∈ R

n1×n2×n3 is the tensor A∗ ∈
R

n2×n1×n3 obtained by conjugate transposing each of the
frontal slices and then reversing the order of transposed frontal
slices 2 through n3.

Definition 4 (Identity Tensor [36]): The identity tensor I ∈
R

n×n×n3 is the tensor whose first frontal slice is the n × n
identity matrix, and other frontal slices are all zeros.

Definition 5 (Orthogonal Tensor [36]): A tensor P ∈
R

n×n×n3 is orthogonal if it satisfies

P∗ ∗ P = P ∗ P∗ = I. (8)

Now we introduce the recently proposed t-SVD, a new
tensor decomposition framework.

Theorem 1 (T-SVD [36]): Assume that A ∈ R
n1×n2×n3 is

a 3-way tensor. Then it can be factored as

A = U ∗ S ∗ V∗, (9)
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where U ∈ R
n1×n1×n3 and V ∈ R

n2×n2×n3 are orthogonal
tensors, and S ∈ R

n1×n2×n3 is a f-diagonal tensor.
T-SVD employs similar properties to matrix SVD, such as

the orthogonal property of U and V , and the diagonal structure
of S. Indeed, when n3 = 1, t-SVD would degrade into matrix
SVD. Now we introduce tensor multi-rank and tubal rank.

Definition 6 (Tensor Multi-Rank and Tubal Rank [33]): For
any A ∈ R

n1×n2×n3 , its multi-rank rankm(A) is a vector
defined as r = (rank( Ā(1)); · · · ; Ā(n3))). The tensor tubal
rank rankt (A) is defined as the number of nonzero singular
tubes of S, i.e.,

rankt(A) = #{i : S(i, i, :) 	= 0} = max (r1, · · · , rn3),

where S is from the t-SVD (see below) of A = U ∗ S ∗ V∗.
Then we can give the definition of tensor nuclear norm,

which is the convex envelop of the tensor average rank.
With this property, we use tensor nuclear norm to depict the
low-rank structure of a tensor.

Definition 7 (Tensor Nuclear Norm [1], [6]): The tensor
nuclear norm �A�∗ of a tensor A ∈ R

n1×n2×n3 is defined as
the sum of the singular values of all frontal slices of Ā, i.e.,
�A�∗ = 1

n3

∑n3
i=1 � Ā

(i)�∗.
Finally, we introduce a lemma which will be used for model

simplification and theoretical analysis.
Lemma 1 [36]: Suppose that A ∈ R

n1×n2×n3 , B ∈
R

n2×n4×n3 are two arbitrary tensors. Let F = A ∗ B. Then,
the following properties hold.

(1) �A�2
F = 1

n3
� Ā�2

F ;

(2) F = A ∗ B and F̄ = ĀB̄ are equivalent to each other.

Note that by utilizing Lemma 1, we can compute t-SVD
in an efficient way. We know that (9) is equivalent to
Ā = Ū S̄V̄ ∗, where Ā(i) = Ū(i) S̄(i)(V̄ (i))∗ is the SVD
of Ā(i), in which Ū(i), S̄(i) and V̄ (i) are the i -th frontal
slices of Ū , S̄ and V̄ , respectively. Thus, we can compute
the SVD of Ā(i) (i = 1, · · · , n3) to obtain the t-SVD of
A. However, computing t-SVD is still very computationally
expensive.

III. TENSOR FACTORIZATION FOR LOW-RANK

TENSOR COMPLETION

Here we first present the details of our low-rank tensor
factorization method, and then introduce its optimization and
analyze its convergence. After that, a rank-decreasing method
is proposed to estimate the true rank of a tensor. Finally, we
compare our method with prior work.

A. Formulation of Tensor Factorization

Tensor completion is to fill in the missing values of a
tensor M ∈ R

n1×n2×n3 under a given subset � of its entries
{Mi j k | (i, j, k) ∈ �}. Since tensor data of high dimensional
are usually underlying low-rank [13], the formulation of tensor
completion can be written as

min
C

rankt(C), s.t. P�(C − M) = 0, (10)

where rankt(C) denotes the tubal rank of C and P� is the
linear operator that extracts entries in � and fills the entries

not in � with zeros. Note that there are several definitions of
tensor rank. The tensor tubal rank in Definition 6 is one of
the commonly used tensor rank definitions. Since the tensor
multi-rank and tubal rank are based on t-SVD, which is an
operator theoretic interpretation of tensors as linear operators
in the space of oriented matrices, applying the tensor multi-
rank or tubal rank to depict the rank of a tensor avoids
destroying the low-rank structure of a tensor [1], [33]. But
since minimizing rankt(C) is complex, it seems natural to
replace rankt(X ) of the sum as the rank of all the frontal
slices of C̄, i.e.,

∑n3
i=1 rank(C̄(i)). To solve it more easily,

Zhang et al. [1] used the tensor nuclear norm
∑n3

i=1 �C̄(i)�∗
defined in Definition 7 to approximate the rank function, with
state-of-the-art completion results achieved [1]. However, as
we mentioned, the nuclear norm problem has to be solved
iteratively and involves SVD at each iteration. What is worse,
tensor data are usually multi-way and high dimensional and
hence are very large scale. Therefore, this approach for nuclear
norm minimization problem suffers from high computation
cost of multiple SVDs. Motivated by this work and matrix
completion research that low-rank matrix factorization method
can handle large scale data more efficiently [24]–[26], we
utilize the low-rank tensor factorization method to recover
the low-rank tensor and aim at a faster method for tensor
completion. We first present two properties of the tensor tubal
rank in Lemma 2.

Lemma 2: Suppose that F ∈ R
n1×n2×n3 , A ∈ R

n1×n2×n3 ,
and B ∈ R

n2×n4×n3 are three arbitrary tensors. Then, the
following properties hold.

(1) If rankt(F) = k̂, then F can be written into a tensor
product form F = G ∗ H, where G ∈ R

n1×k̂×n3 and
H ∈ R

k̂×n2×n3 are two tensors of smaller sizes and they
meet rankt(G) = rankt(H) = k̂;

(2) rankt(A ∗ B) ≤ min (rankt(A), rankt(B)).

The proof of Lemma 2 can be found in the supplementary
material. As we can see, based on t-product and t-SVD, the
tensor tubal rank enjoys some similar interesting properties
as the matrix rank. Actually, when the third dimension is 1,
the properties in Lemma 2 can also be applicable to a matrix.
Thus we can adopt a low-rank factorization strategy, which
is similar to the matrix factorization method, to deal with
the large scale tensor completion problem more efficiently.
By utilizing Lemma 2, we characterize the low-rank property
of a low-rank tensor by factorizing it into the product of two
tensors with smaller sizes. That is, we can factorize any tensor
M of a tensor tubal rank up to r̂ into the tensor product
form M = X ∗ Y of two tensors X ∈ R

n1×r̂×n3 and
Y ∈ R

r̂×n2×n3 , which meet rankt(X ) = rankt(Y) = r̂ . Thus,
we can control the rank of the tensor M by controlling the
sizes of two tensors X and Y . Note that we can always adjust
the shape of M so that it satisfies n1 = max (n1, n2, n3)
or n2 = max (n1, n2, n3). For example, if a tensor F ∈
R

n1×n2×n3 meets n3 = max (n1, n2, n3), we can reshape it
by transposing each horizontal slice to obtain a new tensor
F � ∈ R

n1×n3×n2 , and then deal with F �
. Besides, the tubal

rank r̂ is typically much smaller than min (n1, n2). Hence,
updating and storing the two smaller tensors can be much more
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efficient. At the same time, following most matrix or tensor
completion methods [3], [10], [11], [25], [26], we assume that
the noise in observation data is Gaussian observation noise and
we use the Frobenius norm to characterize it. Accordingly, our
tensor factorization formulation can be written as follows:

min
X ,Y

1

2
�P�(X ∗ Y − M)�2

F . (11)

To solve problem (11) more conveniently, we introduce one
auxiliary variable C and rewrite problem (11) as follows:

min
X,Y,C

1

2
�X ∗ Y − C�2

F , s.t. P�(C − M) = 0. (12)

Accordingly, in problem (12) only the variable C is involved
in the linear operator P�. So when using the optimization
method in Sec. III-B to update C, we only need to project C
onto � which is easy. In contrast, in problem (11), P� has
constraints on the product of X and Y and hence updating
X or Y by the optimization method in Sec. III-B is more
challenging.

Now, we discuss problem (12) in detail. Assume that
rankm(C) = r and rankt (C) = r̂ , where ri = rank(C̄(i))
(i = 1, · · · , n3) and r̂ = max (r1, · · · , rn3). Thus, C̄(i) ∈
C

n1×n2 can be factorized into the product of two matrices
X̂(i) and Ŷ (i) of smaller sizes, where X̂(i) ∈ C

n1×ri and
Ŷ (i) ∈ C

ri×n2 are the i -th block diagonal matrices of X̂ ∈
C

n1n3×(
∑n3

i=1 ri ) and Ŷ ∈ C
(
∑n3

i=1 ri )×n2n3 , respectively. Let
X̄(i) = [X̂(i), 0] ∈ C

n1×r̂ and Ȳ (i) = [Ŷ (i); 0] ∈ C
r̂×n2 . Then,

we have X̂Ŷ = X̄Ȳ . From Lemma 1, we know that X̄Ȳ and
X ∗ Y are equivalent and �X ∗ Y − C�2

F = 1
n3

�X̄Ȳ − C̄�2
F .

Thus, problem (12) is equivalent to

min
X̂,Ŷ ,C

1

2n3

n3∑

i=1

�X̂(i)Ŷ (i) − C̄(i)�2
F , s.t. P�(C − M) = 0.

(13)

B. Optimization of Tensor Factorization

Problem (13) is not jointly convex with respect to (X̂, Ŷ ,C).
Empirically, we can develop an iterative minimization method
to update each variable alternately. Similar to [3] and [25]
which respectively use the alternating minimization algorithm
to optimize matrix and tensor completion problem, here we
also adopt it as our optimization method. We can update the
three variables in turn as follows:

C = argmin
P�(C−M)=0

1

2
�X ∗ Y − C�2

F

= X ∗ Y + P�(M − X ∗ Y). (14)

Then, we can obtain C̄ via C and then update X̂ and Ŷ as
follows:

X̂(i) = argmin
X̂(i)

1

2n3
�X̂(i)Ŷ (i) − C̄(i)�2

F

= C̄(i)(Ŷ (i))∗
(

Ŷ (i)(Ŷ (i))∗
)†

, i = 1, · · · , n3, (15)

Ŷ (i) = argmin
Ŷ (i)

1

2n3
�X̂(i)Ŷ (i) − C̄(i)�2

F

=
(
(X̂(i))∗ X̂(i)

)†
(X̂(i))∗C̄(i), i = 1, · · · , n3. (16)

After updating X̂ and Ŷ , we can compute
X ∗ Y in an efficient way. Assume that G = X ∗ Y .
Then we first compute Ḡ(i) = X̂(i)Ŷ (i) (i = 1, · · · , n3)
and obtain G = ifft(Ḡ, [], 3). This is more efficient than
directly computing C = X ∗ Y . Furthermore, all X̂(i) can
be updated parallelly and all Ŷ (i) can also be parallelly
computed. But in this paper, we adopt the serial updating
scheme in our code, since our serial updating scheme is also
very fast. Please refer to Section IV. The detailed optimization
procedure is presented in Algorithm 1.

Algorithm 1 Tensor Completion by Tensor Factorization
(TCTF)

Complexity Analysis: Here we analyze the computational
complexity of Algorithm 1. At each iteration, when
updating C by Eqn. (14), the computational cost for
conducting the (inverse) DFT and matrix product
is O (

r̂(n1 + n2)n3 log n3 + r̂ n1n2n3
)

where r̂ is the
estimated tubal rank of C. Then the cost of updating
X and Y respectively by Eqn. (15) and (16) is
O (

r̂(n1 + n2)n3 log n3 + r̂n1n2n3
)
. In step 4, we use

QR decomposition to estimate the target rank whose cost
is also O (

r̂(n1 + n2)n3 log n3 + r̂n1n2n3
)
. So the total

cost at each iteration is O (
r̂(n1 + n2)n3 log n3 + r̂ n1n2n3

)
.

By comparison, for matricization methods, the costs of
SiLRTC [2] and TMac [3], which respectively employ
nuclear norm minimization and matrix factorization
strategy, are respectively O ((n1 + n2 + n3)n1n2n3) and
O ((r1 + r2 + r3)n1n2n3) at each iteration, where r1, r2 and
r3 respectively denote the estimated rank of the three unfolded
matrices. RMTC [5] further considers the Riemannian
manifold and has the cost O (r1r2r3n1n2n3). Based on
matricization, TenALS [4] is an alternative convex relaxation
of Tucker rank and is tighter than TNN. But at each iteration,
TenALS has a subproblem to solve and its cost at each outer
iteration is O (

(n1 + n2 + n3)n1n2n3 + t (n2
1 + n2

2 + n2
3)

)
,

where t is the inner loop iteration. Thus, at each iteration,
the computational cost of our algorithm is much lower
than those of matricization methods. Now we compare our
method with TNN [1] and Tubal-Alt-Min [41] whose costs
at each iteration are O (n1n2n3 log n3 + n1n2n3 min(n1, n2))
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and O (
r̂(n1 + n2)n3 log n3 + r̂ n1n2n2

3 log2(max(n1, n2))
)
,

respectively. We can observe that our method is more efficient
than TNN and Tubal-Alt-Min. Also the tensor tubal rank
based methods, e.g. our method and TNN, usually have
lower computational complexity than matricization methods,
such as SiLRTC and TMac. Actually, we also find that the
factorization based methods, i.e. our method and TMac, also
outperform their corresponding nuclear norm minimization
counterparts, i.e. TNN and SiLRTC, on computational
efficiency.

C. Convergence Analysis

In this subsection, before proving the convergence of the
proposed algorithm, we first present the first order optimality
conditions for (13). By introducing a Lagrangian multiplier
Q for the constraint, we can write the Lagrangian function of
problem (13):

L(X̂, Ŷ ,C,Q) = 1

2n3
�X̂Ŷ − C̄�2

F + �Q, P�(C − M) .

(17)

Let ∇X̂L = 0,∇ŶL = 0,∇CL = 0 and ∇QL = 0. We can
obtain the following KKT conditions:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(X̂Ŷ − C̄)Ŷ ∗ = 0,

X̂∗(X̂Ŷ − C̄) = 0,

P�c (C − X ∗ Y) = 0,

P�(C − M) = 0,

P�(C − X ∗ Y) + Q = 0,

(18)

where �c is the complement of �.
Now we establish Theorem 2 to prove that Algorithm 1

decreases the objective function value monotonically and it
can converge to a KKT point of our optimization problem.

Theorem 2: Assume that f (X̂, Ŷ ,C) = 1
2n3

�X̂Ŷ − C̄�2
F =

1
2n3

∑n3
i=1 �X̂(i)Ŷ (i) − C̄(i)�2

F is the objective function and the

sequence {(X̂k, Ŷ k,Ck)} generated by Algorithm 1 is bounded.
Then, the sequence {(X̂k, Ŷ k,Ck)} satisfies the following prop-
erties:
(1) f (X̂k, Ŷ k,Ck) is monotonically decreasing. Actually, it

satisfies the following inequality:

f (X̂k , Ŷ k,Ck) − f (X̂k+1, Ŷ k+1,Ck+1)

≥ 1

2n3
�X̂k+1Ŷ k+1 − X̂k Ŷ k�2

F ≥ 0. (19)

(2) Any accumulation point (X̂�, Ŷ�,C�) of the sequence
{(X̂k, Ŷ k,Ck)} is a KKT point of problem (13).

Therefore, the theoretical convergence of Algorithm 1 can
be guaranteed. It is worth mentioning that X̂0 and Ŷ 0 are
randomly initialized. Besides, when a tensor reduces to a
matrix, i.e., n3 = 1, the whole method and algorithm can still
be applied and the convergence of the algorithm also holds.
Thus, matrix completion is one special case that our method
can deal with. We adopt similar proof sketch proposed in [3]
to prove Theorem 2 in the supplementary material. But there
are also differences since our convergence analysis couples
two spaces, the original space and the Fourier space, and

hence it is needed to further consider the properties of Fourier
transformation and the block diagonal structure of the analyzed
matrices.

D. Rank Estimation

In most cases, we do not know the true rank of tensor data.
Thus, it is necessary to develop a method for estimating the
rank of data. Similar to [3] and [25], we adopt the rank-
decreasing method to estimate the true rank of a tensor. In
this paper, to characterize the rank of data more accurately and
efficiently, we estimate the rank for each block diagonal matrix
C̄(i). Suppose that the multi-rank of C̄(i) (i = 1, · · · , n3)
is rk = [rk

1 , · · · , rk
n3

] at the k-th iteration. We compute the
eigenvalues of (X̂(i))∗ X̂(i) (i = 1, · · · , n3) and then sort all
these eigenvalues, and we can obtain λ1 ≥ λ2 ≥ · · · ≥ λnk ,
where nk = ∑n3

i=1 rk
i . Finally, we compute the quotients λ̂i =

λi/λi+1 (i = 1, · · · , nk − 1). Assume that tk = argmax
1≤i≤nk−1

λ̂i

and τ k = (tk − 1)λ̂t k /
∑

i 	=t k λ̂i . If τ k ≥ 10, i.e., there being
a large drop in the magnitude of the eigenvalues, we should
reduce rk . Similar to PCA [40], we find λsk such that it meets∑sk

i=1 λi/
∑nk

i=1 λi ≥ 95%. Assume there are mk
i eigenvalues

of (X̂(i))∗ X̂(i) which belong to {λsk+1, · · · ,λnk }. Then we set
rk

i = rk
i − mk

i . Suppose U(i)�(i)(V (i))T is the skinny SVD of
X̂(i)Ŷ (i). We can update X̂(i) = U(i)

rk
i

�
(i)
rk

i
and Ŷ (i) = (V (i))T

rk
i
,

where U(i)
rk

i
consists of the first rk

i columns of U(i) and V (i)
rk

i

consists of the first rk
i rows of V (i). �

(i)
rk

i
is a diagonal matrix

whose diagonal entries are the largest rk
i eigenvalues of �(i).

In this way, we can adjust the rank rk and estimate the true
rank of the tensor data.

E. Differences from Prior Work

Since both TNN [1] and our method are based on tensor
tubal rank, we first explain the differences between these two
methods.

(1) TNN [1] is a tensor nuclear norm minimization approach.
It uses the tensor nuclear norm to approximate the tensor
tubal rank and its model is formulated as

min
C

n3∑

i=1

�C̄(i)�∗, s.t. P�(C − M) = 0. (20)

In this way, TNN preserves the low-rank structure of
the tensor. In contrast, our method employs low-rank
tensor factorization method to characterize the low-rank
property of the tensor. Thus, they are two different kinds
of methods for tensor completion.

(2) Since these two methods adopt two different strategies
to deal with the tensor rank issue, their algorithms are
also very different. To solve the nuclear norm minimiza-
tion problem (20), TNN has to compute t-SVD at each
iteration and thus suffers from high computational cost.
In contrast, our method only needs to update two tensors
of smaller sizes and avoids t-SVD computation, leading
to higher computational efficiency. Since tensor data are
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Fig. 1. Comparison of tensor completion on synthetic data. (a), (b), and
(c) report the frequency of success, the rank error, and the algorithm running
time (seconds), respectively. Best viewed in ×2 sized color pdf file.

usually large scale, the algorithm efficiency becomes
more important.

Now we compare our method with a concurrent similar
work, i.e. Tubal-Alt-Min [41]. This work is also based on
tensor tubal rank and tensor nuclear norm, and adopts the
tensor factorization method for tensor completion. But there
are also essential differences between these two concurrent
methods.

(1) These two methods adopt very different alternating min-
imization algorithms. The optimization of Tubal-Alt-
Min is more complex (see Algorithm 2 in [41]), which
involves median least squares minimization and smooth
QR decomposition at each iteration and has higher
computational complexity (see discussion in Sec. III-B).
By comparison, our algorithm is much simpler. At each
iteration, our algorithm only needs to compute the closed
form solutions of the variables (see Algorithm 1).

(2) Their rank estimation strategies also differ. Tubal-Alt-Min
needs to know the target rank in advance, but mostly
the true rank of a tensor of incomplete observations is
unknown. So manually tuning the target rank or using
other methods (e.g. TNN [1]) to estimate the target rank
is unavoidable. But both are time-consuming, especially
for large-scale tensor data. Besides, the performance of
Tubal-Alt-Min may be limited by the rank estimation
methods, e.g. TNN [1]. For example, for tensor data of
high tubal rank, TNN cannot provide a good estimated
rank (see Fig. 1), leading to performance degradation of
Tubal-Alt-Min. By comparison, our method integrates the
factorization process with our rank estimation strategy
and can adaptively estimate the target rank at each
iteration. Fig. 1 demonstrates the validity of our rank
estimation method which indeed outperforms TNN when
the rank of a tensor is relatively high. So our method is
actually more efficient, and our experiments have verified
our better performance than Tubal-Alt-Min.

Now we compare our method with other factorization based
methods.

(1) The CP decomposition based methods, such as [30],
compute the smallest number of rank one tensor decom-
position and their optimization problems are generally
NP hard [16], [31], [32], while matricization methods,
such as TMac [3], directly unfold the tensor into matrices
and then apply matrix factorization method to portray the
low-rank structure of the tensor. In contrast, based on

the tensor tubal rank, our method factorizes the tensor of
interest into the product of two tensors of smaller sizes,
which is different from other factorization based methods.
Besides, the experimental results (e.g. Fig. 5 and 7) show
our superior efficiency.

(2) Our model, optimization method, and the convergence
analysis couple two spaces, the original space and the
Fourier space, while the other factorization based methods
only focus on the original space.

IV. EXPERIMENTS

We conduct extensive experiments to evaluate our method,
first testing it on synthetic data and then comparing it
with other state-of-the-arts, including TMac [3], SiLRTC [2],
TenALS [4], RMTC [5], TNN [1], and Tubal-Alt-Min [41]
on image and video inpainting applications. Note that TMac
has two versions, TMac-dec and TMac-inc, with the former
using the rank-decreasing scheme to adjust its rank while
the latter using the rank-increasing scheme. Please refer
to [3]. The codes of TMac1, SiLRTC2, TenALS3, RMTC4

and TNN5 are provided by their corresponding authors. As
Eqns. (15) and (16) show, we can parallelly update all X̂(i)

and Ŷ (i) (i = 1, · · · , n3), but for fair comparison of algorithm
running time, we still employ the serial updating scheme
in our code. In all experiments, our method randomly ini-
tializes X̂(i) = randn(n1, r0

i ) and Ŷ (i) = randn(r0
i , n2)

(i = 1, · · · , n3). For all methods, including ours, the stopping
criteria are �V k+1

1 − V k
1 �+∞ ≤ tol, �V k+1

2 − V k
2 �+∞ ≤

tol, · · · , �V k+1
l − V k

l �+∞ ≤ tol, where V1, V2, · · · , Vl are
l variables, and V k

i and V k+1
i denote the i -th updated variables

at the k-th and the (k + 1)-th iterations, respectively. In all
experiments, we set tol = 10−5. The platform is Matlab
2013a under Windows 8 on a PC of a 3.4GHz CPU and 8GB
memory. Our code will be released online.

A. Synthetic Experiments

Both TNN [1] and our method TCTF are based on the
tensor multi-rank and tubal rank definitions, depicting the
inherent low-rank structure of a tensor by characterizing the
low-rank property of their Fourier transform result. Here we
conduct experiments to compare them in detail on synthetic
data. Other methods are not compared here since they use
different tensor rank definitions. Tubal-Alt-Min [41] is also
excluded in comparison, since it needs to know the target rank
in advance while the experiments here aim at investigating the
tensor rank estimation ability and exact recovery performance
of the algorithms.

We generate a low-rank tensor M ∈ R
n1×n2×n3 and �

by the following method. First, we use Matlab command
randn(n1, r̄ , n3) and randn(r̄ , n2, n3) to produce two ten-
sors A ∈ R

n1×r̄×n3 and B ∈ R
r̄×n2×n3 . Then, let M = A∗B.

Finally, we uniformly select pn1n2n3 positions of M to

1http://www.caam.rice.edu/ yx9/TMac/
2http://www.cs.rochester.edu/ jliu/publications.html
3http://web.engr.illinois.edu/ swoh/software/optspace/code.html
4https://bamdevmishra.com/codes/tensorcompletion/
5http://www.ece.tufts.edu/ shuchin/software.html
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Fig. 2. Effects of parameters (the size of testing tensors and the sampling
rate p) to the two methods. (a) n1 = 80, n2 = 50, n3 = 20 and p = 0.7.
(b) n1 = 50, n2 = 80, n3 = 100 and p = 0.8. The left, middle, and right
figures in (a) and (b) report the frequency of success, the rank error, and
the algorithm running time (seconds), respectively. Best viewed in ×2 sized
color pdf file.

construct �, where p is the sampling ratio. In the experiments,
we just set n1 = n2 = n3 = 100 and p = 0.6. Suppose Ĉ
is the recovered tensor of M. We adopt the relative error
relerr = �Ĉ − M�2

F/�M�2
F and the average algorithm

running time as evaluation metrics. If relerr ≤ 10−2, Ĉ
is regarded as a successful recovery to M. For fairness, we
run these methods 50 times with the rank r̄ varying from
4 to 36 with increment 2. Following common experiment
settings [3], [25], we set the initialized rank r0 =
1.5[r̄, · · · , r̄ ] ∈ R

n3 in our method.
In Fig. 1 (a), we report the frequency of success of these two

methods. Our method performs a little better than TNN. Note
the rank of each frontal slice of the Fourier transform result
M̄ of the generated tubal rank r̄ tensor M is also r̄ . Thus,
in Fig. 1 (b), we report the rank error rankerr = ∑n3

i=1 |r̂i −
r̄ |/n3, where r̂i is the estimated rank of the i -th frontal slice
of M̄. We find that when the rank increases, the difficulty
for accurate recovery also increases, since the degrees of
freedom of the data are also increasing. But compared with
TNN, our method could estimate a more accurate rank of
data. Therefore, our method achieves better recovery results.
Fig. 1 (c) reports the average algorithm running time. Our
method is about three times faster than the TNN method,
since TNN needs to minimize the tensor nuclear norm and
has to compute t-SVD at each iteration which is of high
computation cost, especially when the data scale is large,
while our method updates two tensors of much smaller sizes
which is much more efficient. Actually, this result is also
consistent with matrix completion conclusion that low-rank
factorization method runs much faster than the matrix nuclear
norm minimization methods [24]–[28].

To verify the robustness of our method to the parameters,
i.e. the size of testing tensors and the sampling rate p, we
conduct another two experiments. In the first experiment, we
set n1 = 80, n2 = 50, n3 = 20 and p = 0.7. Similar to the
above experiment, we also report the frequency of successful
recovery, the rank estimation error, and the average algorithm
running time in Fig. 2 (a). In the second experiment, we set

Fig. 3. Illustration of the low tubal rank property of the images in
Berkeley Segmentation database. (a) and (b) are two images randomly
selected from the database. (c) and (d) display the singular values of
(a) and (b), respectively.

n1 = 50, n2 = 80, n3 = 100 and p = 0.8 and report the
experimental results in Fig. 2 (b). Although the size of the
testing tensors and the sampling rate are very different, we
can observe similar improvement of our method over TNN.
Namely, when the tubal rank is relatively small, both methods
can exactly recover the original low-rank tensor; and when
faced with tensors of a relatively large tubal rank, our method
works while TNN fails. For the estimation of the true tubal
rank, our method can also gain better accuracy than TNN when
handling tensors of a relatively small tubal rank, demonstrating
its advantages. As for the running time, our method is always
much faster than TNN. All these results are consistent with
each other and those in Fig. 1. Thus, it is verified that our
method is very robust to the parameters.

B. Real Data Experiments

We evaluate our method and other state-of-the-art meth-
ods on color image inpainting and gray scale video
inpainting tasks. Color image and gray scale video are
3-way tensors and the inpainting task is to fill in the
missing pixel values of a partially observed image or
video. Assume that Ĉ is the recovered tensor of M ∈
R

n1×n2×n3 . We employ the peak signal-to-noise ratio (PSNR),
defined as

PSNR = 10 log10

(
n1n2n3�M�2∞
�Ĉ − M�2

F

)
, (21)

and the algorithm running time to evaluate these
methods.

1) Image Inpainting: We use the Berkeley Segmentation
database6 [42] to evaluate our method for image inpainting.
This database contains a wide variety of natural scenes. It has
a total of 200 color images, each with size 321 × 481 × 3.
As pointed out by many works [20], [43]–[50], when arranging

6https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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Fig. 4. Examples of image inpainting. (a) is the original image. (b) is the observed image. (c)-(j) are the inpainting results of TMac-dec, TMac-inc, SiLRTC,
TenALS, RMTC, TNN, Tubal-Alt-Min and our TCTF, respectively. (k) summaries the PSNR values and the running time (seconds) of all methods on the
five testing images. Best viewed in ×2 sized color pdf file.

Fig. 5. Comparison of the PSNR values and the algorithm running time (seconds) on the randomly selected 50 images. (a) Comparison of the PSNR values.
(b) Comparison of the algorithm running time (seconds).

image or video data into matrices, they approximately lie on a
union of low-rank subspaces, indicating the low-rank structure
of the visual data. This is also true for tensor data. Actually,
in Fig. 3 we plot the singular values of two images randomly
selected from the dataset, most of which are very close
to 0, and much smaller than the first several larger singular
values. Indeed, in Fig. 3 (c) and (d), the numbers of singular
values larger than 3% of the corresponding largest ones are
14 and 34, respectively, accounting for 1.5% and 3.5% of the
total number 963 of the singular values, respectively. Thus,

these images can be well approximated by the low tubal rank
tensors.

In experiments, we randomly select 55 images from this
database for testing. Then we randomly sample all testing
images by the sampling ratio p = 0.7. We set the initialized
rank r0 = [30, 30, 30] in TMac-dec and r0 = [3, 3, 3]
with increment 2 in TMac-inc, and set the weights α1 =
α2 = α3 = 1/3 for both versions as suggested in [3].
Following [2], the weight parameter α = λ/�λ�1 for SiLRTC,
where λ = [1, 1, 10−3], and the penalty coefficient β is
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Fig. 6. Illustration of the low tubal rank property of the videos in YUV Video
Sequences. (b) displays the singular values of the video (a) of 30 frames.

tuned by the method provided in [2]. In TenALS, the hyper-
parameters α and γ are tuned by the methods provided in
Section Experiment [4]. TNN is parameter free [1]. Since
RMTC and Tubal-Alt-Min respectively need to know the
true Tucker rank and the tensor tubal rank in advance, we
just manually tune them. For fairness, in our method, we
also set the initialized rank r0 = [30, 30, 30] for all testing
images.

We display the inpainting results of the five testing images
in Fig. 4. Our method outperforms other methods on all
of them. These methods, i.e. TMac, SiLRTC, TenALS and
RMTC, directly unfold the tensor data into matrices and apply
matrix nuclear norm or factorization method to preserve the
low-rank structure of the tensor, thus may destroy multi-data
structure and lead to performance degradation [1], [32], [33].
TNN, Tubal-Alt-Min and our method are based upon recent
results on decomposition of a tensor and avoid the loss of
structure information of the tensor [1], [33], thus can obtain
better inpainting results. From the recovery results, our method
recovers the details much better and it can well preserve the
water-drops on the flowers, the edges of sand dune, the beards
of the river otter, the leaves of trees, the textures of the viaducts
and the mountains, and chimney above the house. It can be
seen that our method is more superior.

We also report the PSNR values and the algorithm running
time in Fig. 4 (k). Our method is the second fastest method,
about three times faster than the third fastest method, TMac-
inc, and at least ten times faster than TenALS and TNN. Since
TNN has to compute t-SVD and DFT at each iteration, it
runs slower. TMac, SiLRTC, TenALS and RMTC belong to
matricization based tensor completion methods, which need
to unfold the tensor data and recover each unfolded matrice.
TMac-inc and TMac-dec run faster than SiLRTC and RMTC,
since TMac-inc and TMac-dec use the low-rank factorization
method, while SiLRTC adopts the nuclear norm and requires
computing SVD and RMTC considers Riemannian manifold
leading to very high computational cost. Besides, TenALS
adopts a more complex convex relaxation instead of SNN
to characterize the low-rank property of the tensor, so its
optimization method is complex and time-consuming. Note,
our method is only a little slower than Tubal-Alt-Min. There
are two reasons. 1) Here we follow the experimental setting
in [41] and use the simplified Tubal-Alt-Min algorithm for

the inpainting task. The simplified algorithm has the same
per-iteration complexity as ours, but it has no exact recovery
performance guarantee. 2) Tubal-Alt-Min knows the target
rank in advance which brings two advantages: less iterations
required for convergence and much cheaper computation for
updating variables thanks to small size of factorization tensors
in Tubal-Alt-Min at the beginning. But the target rank is
usually unknown in advance, and manually tuning or using
other methods (e.g. TNN [1]) to estimate it will be very
time-consuming, especially for large-scale data. Indeed, in the
experiments, we first use TNN to estimate an accurate target
rank and then tune it around the estimated rank. Note that the
running time of Tubal-Alt-Min does not include that of TNN
for estimating an accurate rank. Thus, our method is actually
more efficient than Tubal-Alt-Min.

In Fig. 5, we report the PSNR values and the algorithm
running time of all methods on the remaining 50 images.
Our method performs the best with at least 1.2 dB improve-
ment upon the PSNR metric on all 50 images, further verifying
its advantages and robustness. From Fig. 5 (b), our method
TCTF is much faster than other compared methods, except
Tubal-Alt-Min. In conclusion, it not only achieves the best
inpainting results but also runs very fast.

2) Video Inpainting: We evaluate our method on the widely
used YUV Video Sequences7. Each sequence contains at least
150 frames. In the experiments, we test our method and other
methods on three videos. The frame sizes of the first two
videos both are 144 × 176 pixels and that of the last one is
146×120 pixels. We also plot the singular values of a video of
size 146×120 and 30 frames in Fig. 6. Its number of singular
values larger than 1% of the largest ones is 64, i.e. 1.5% of the
total number 4,320 of singular values. It is worth mentioning
that there are so many singular values which are very close
to 0. Therefore, compared with images in Fig. 3, the video in
Fig. 6 has much more redundant information because of its
similar contents within and between frames, and thus its low
tubal rank structure is more notable.

Due to the computational limitation, we only use the first
30 frames of the three sequences. We set the sampling ratio
p = 0.7 and uniformly sample the videos to construct �.
The weight parameter α = [ 1

3 , 1
3 , 1

3 ] in SiLRTC is suggested
for video inpainting [2]. All other parameters of other four
methods are set the same as above. Our method sets the
initialized rank r0 = [30, · · · , 30] ∈ R

30.
As shown in Fig. 7, we display the 15th frame of the three

testing videos, respectively. From the recovery results, our
method performs better in filling the missing values of the
three testing sequences. It can deal with the details of the
frames better. On the PSNR metric, our method also achieves
the best, consistent with the observation in Fig. 7. From time
consumption, our method uses similar running time as Tubal-
Alt-Min and is the second fastest method. It is about two
times faster than the third fastest method TMac-inc and at least
five times faster than the slowest method TenALS. We have
discussed the reasons above. The video inpainting results are
also consistent with the image inpainting results and all these

7http://trace.eas.asu.edu/yuv/
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Fig. 7. Examples of video inpainting. (a) Original frame. (b) Observed frame. (c)-(j) Inpainting results of TMac-dec, TMac-inc, SiLRTC, TenALS, RMTC,
TNN, Tubal-Alt-Min and our TCTF. (k) PSNR values and running time (sec) of all methods on three testing videos. Best viewed in ×2 sized color pdf file.

demonstrate that our method can perform tensor completion
better and runs more efficiently.

V. CONCLUSION

We propose a novel low-rank tensor factorization method
for tensor completion. Based on the property of tensor tubal
rank, our method depicts the low-rank structure of a tensor by
factorizing the tensor into the product of two tensors of smaller
sizes rather than minimizing tensor nuclear norm. Therefore, it
avoids computing t-SVD and only needs to update and store
two tensors of smaller sizes, leading to a higher algorithm
efficiency. Compared with matricization methods that apply
matrix nuclear norm or low-rank matrix factorization to each
mode unfolding of the tensor, our method avoids destroying
the inherent low-rank structure of the tensor. Besides, we prove
that our proposed optimization method can converge to a KKT
point. Experimental results demonstrate that our method not
only obtains better performance but also runs faster than most
compared state-of-the-art tensor completion methods.
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