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Abstract

Compressed Sensing (CS) is a new data acquisition theory based on the existence of
a sparse representation of a signal and a projected dictionary PD, where P € R™*¢
is the projection matrix and D € R¥*" is the dictionary. To recover the signal from a
small number m of measurements, it is expected that the projected dictionary PD is of
low mutual coherence. Several previous methods attempt to find the projection P such
that the mutual coherence of PD is low. However, they do not minimize the mutual
coherence directly and thus they may be far from optimal. Their used solvers lack con-
vergence guarantee and thus the quality of their solutions is not guaranteed. This work
aims to address these issues. We propose to find an optimal projection matrix by min-
imizing the mutual coherence of PD directly. This leads to a nonconvex nonsmooth
minimization problem. We approximate it by smoothing, solve it by alternating min-
imization and prove the convergence of our algorithm. To the best of our knowledge,
this is the first work which directly minimizes the mutual coherence of the projected
dictionary and has convergence guarantee. Numerical experiments demonstrate that
our method can recover sparse signals better than existing ones.
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1. Introduction

Compressed Sensing (CS) [IL, 2] is a new sampling/data acquisition theory asserting
that one can exploit sparsity or compressibility when acquiring signals of interest. It
shows that signals which have a sparse representation with respect to appropriate bases
can be recovered from a small number of measurements. A fundamental problem in
CS is how to construct a measurement matrix such that the number of measurements is
near minimal.

Consider a signal x € R¢ which is assumed to have a sparse representation with
respect to a fixed overcomplete dictionary D € R?*"™ (d < n). This can be described
as

x = Da, (D

where o € R”™ is a sparse representation coefficient, i.e., |||, < n. Here |||,
denotes the £p-norm which counts the number of nonzero elements in c. The solution
to problem (1)) is not unique since d < n. To find an appropriate solution in the solution
set of (EI) we need to use some additional structures of D and . Considering that v is
sparse, we are interested in finding the sparsest representation coefficient oc. This leads

to the following sparse representation problem
min [|af,, s.t. x = Da. )
(a2

However, the above problem is NP-hard [3] and thus is challenging to solve. Some
algorithms, such as Basis Pursuit (BP) [4] and Orthogonal Matching Pursuit (OMP)
[S], can be used to find suboptimal solutions.

An interesting theoretical problem is that under what conditions the optimal solu-
tion to (2) can be computed. If the solution is computable, can it be exactly or approx-
imately computed by BP or OMP? Some previous works answer the above questions

based on the mutual coherence of the dictionary D [6].

Definition 1. Given D = [dy,--- ,d,] € R¥", its mutual coherence is defined as
the largest absolute and normalized inner product between different columns of D, i.e.,

| d|

D) = 1% Gl
HD) = B T,
i#£]
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The mutual coherence measures the highest correlation between any two columns of

D. It is expected to be as low as possible in order to find the sparest solution to (2).

Theorem 1. /6,71 8] For problem (2), if e satisfies

ey < ! (1 + 1) , A3)
2 n(D)

then the following results hold:

* «is the solution to (2.
* « is also the solution to the following convex {1-minimization problem
mcin lall; s s.t. x =De,
where |||, = >, || is the £1-norm of o
* « can be obtained by OMP.

The above theorem shows that if the mutual coherence of D is low enough, then the
sparest solution to (Z) is computable. Thus, how to construct a dictionary D with
low mutual coherence is crucial in sparse coding. In CS, to reduce the number of
measurements, we face a similar problem on the sensing matrix construction.

The theory of CS guarantees that a signal having a sparse representation can be re-
covered exactly from a small set of linear and nonadaptive measurements. This result
suggests that it may be possible to sense sparse signals by taking far fewer measure-
ments than what the conventional Nyquist-Shannon sampling theorem requires. But
note that CS differs from classical sampling in several aspects. First, the sampling
theory typically considers infinite-length and continuous-time signals. In contrast, CS
is a mathematical theory that focuses on measuring finite-dimensional vectors in R".
Second, rather than sampling the signal at specific points in time, CS systems typically
acquire measurements in the form of inner products between the signal and general test
functions. At last, the ways to dealing with the signal recovery are different. Given the
signal x € R in , CS suggests replacing these n direct samples with m indirect
ones by measuring linear projections of x defined by a proper projection or sensing
matrix P € R™*4, je.,

y = Px, “
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such that m < d. It means that instead of sensing all n elements of the original signal
X, we can sense x indirectly by its compressed form y in a much smaller size m.
Surprisingly, the original signal x can be recovered from the observed y by using the
sparse representation in (I, i.e, y = PDa with the sparest . Thus the reconstruction

requires solving the following problem
min [|af,, s.t. y = Me, (5)

where M = PD € R™*" is called the effective dictionary. Problem (5)) is also NP-
hard. As suggested by Theorem [I] if the mutual coherence of PD is low enough,
then the solution ¢ to (5) is computable by OMP or by solving the following convex
problem

min ||lalfl;, s.t. y = Ma. (6)

Finally, the original signal x can be reconstructed by x = Dea. So it is expected to find
a proper projection matrix P such that ;(PD) is low. Furthermore, many previous
works [9,[10] show that the required number of measurements for recovering the signal
x by CS can be reduced if u(PD) is low.

In summary, the above discussions imply that by choosing an appropriate projection
matrix P such that u(PD) is low enough, the true signal x can be recovered with
high probability by efficient algorithms. At the beginning, random projection matrices
were shown to be good choices since their columns are incoherent with any fixed basis
D with high probability [[11]. However, many previous works [9} [12} [10] show that
well designed deterministic projection matrices can often lead to better performance
of signal reconstruction than random projections do. In this work, we focus on the
construction of deterministic projection matrices. We first give a brief review on some

previous deterministic methods.

1.1. Related Work

In this work, we only consider the case that D is fixed while P can be changed.
Our target is to find P by minimizing p(M), where M = PD. If each column of

M is normalized to have unit Euclidean length, then (M) = ||G|| where G =

00, 0ff?

(9ij) = MTM is named as the Gram matrix and |Gl o o = maxizj|giz| is the
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largest off-diagonal element of |G|. Several previous works used the Gram matrix to
find the projection matrix P [9, [12, [10]. We give a review on these methods in the

following.

1.1.1. The Algorithm of Elad

The algorithm of Elad [9] considers minimizing the ¢-averaged mutual coherence
defined as the average of the absolute and normalized inner products between different
columns of M which are above ¢, i.e.,

. Z1§z’,j§k, i#] xt(19i51)19:5]

(M)
Zlgi,jgk, i#£j Xt(|9ij|)

)
where x,(z) is the characteristic function defined as

1, ifz >t
Xi(z) =
0, otherwise,
and ¢ is a fixed threshold which controls the top fraction of the matrix elements of |G|
that are to be considered.
To find P by minimizing y; (M), some properties of the Gram matrix G = M”M
are used. Assume that each column of M is normalized to have unit Euclidean length.

Then
diag (G) =1, @)

rank (G) = m. 8)

The work [9] proposed to minimize 1, (M) by iteratively updating P as follows. First,
initialize P as a random matrix and normalize each column of PD to have unit Eu-

clidean length. Second, shrink the elements of G = M” M (where M = PD) by

9ij =  ytsign(gij), ift > |gij| >,

Gij if vt > |gijl,
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where 0 < v < 1is a down-scaling factor. Third, apply SVD and reduce the rank of G
to be equal to m. At last, build the square root S of G: STS = G, where S € Rm*",
and find P = SD', where T denotes the Moore-Penrose pseudoinverse.

There are several limitations of the algorithm of Elad. First, it is suboptimal since
the t-averaged mutual coherence u; (M) is different from the mutual coherence 11(M)
which is our real target. Second, the proposed algorithm to minimize y;(IM) has no
convergence guarantee. So the quality of the obtained solution is not guaranteed. Third,
the choices of two parameters, ¢ and -y, are crucial for the signal recovery performance
in CS. However, there is no guideline for their settings and thus in practice it is usually

difficult to find their best choices.

1.1.2. The Algorithm of Duarte-Carajalino and Sapiro
The algorithm of Duarte-Carajalino and Sapiro [12] is not a method that is based
on mutual coherence. It instead aims to find the sensing matrix P such that the corre-

sponding Gram matrix is as close to the identity matrix as possible, i.e.,
G=M"M=D"P"PD ~1, 9)
where I denotes the identity matrix. Multiplying both sides of the previous expression
by D on the left and D7 on the right, it becomes
DD'PTPDD? ~ DD?. (10)
Let DD” = VAV be the eigen-decomposition of DD, Then (10} is equivalent to
AVIPTPVA = A. (11)
Define I' = PV. Then they finally formulate the following model w.r.t. T"
. T
min [|A — ATTTA[[ . (12)
After solving the above problem, the projection matrix can be obtained as P = T'V™.
However, usually the signal recovery performance of the algorithm of Duarte-
Carajalino and Sapiro is not very good. The reason is that M is overcomplete and
the Gram matrix G cannot be an identity matrix. In this case, simply minimizing the

difference between the Gram matrix G and the identity matrix does not imply a solu-

tion M with low mutual coherence.
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1.1.3. The Algorithm of Xu et al.
The algorithm of Xu et al. [[10]] is motivated by the well-known Welch bound [13].
For any M € R™*™, the mutual coherence p(M) is lower bounded, e.g.,

n—m

n(M) > m

13)

The algorithm of Xu et al. aims to find M such that the off-diagonal elements of
G = M”M approximate the Welch bound well. They proposed to solve the following
problem
in|G-G
min |G — G

(14)
s.t. Gy = GKﬁ dlag(GA) =1, ||G/\||oo,0ff < pw,

where uw = 4/ % The proposed iterative solver for the above problem is similar
to the algorithm of Elad. The main difference is the shrinkage function used to control
the elements of G. See [10] for more details.

However, their proposed solver in [10] for @ also lacks convergence guarantee.
Another issue is that, for M € R™*"  the Welch bound is not tight when n is
large. Actually, the equality of can hold only when n < W This implies
that the algorithm of Xu et al. is not optimal when n > W

Beyond the above three methods, there are also some other mutual coherence op-
timization based methods for the dictionary learning. For example, the work [[14] pro-
poses a joint sparse coding and incoherent dictionary learning model which shares a
similar idea as the algorithm of Duarte-Carajalino and Sapiro [12]]. The work [15]] con-
siders a model with hard constraint on the mutual coherence and sparsity and proposes

a heuristic iterative projection solver. Greedy algorithms are proposed in [[16} [17] to

find a sensing matrix for a dictionary that gives low cumulative coherence.

1.2. Contributions

There are at least two main issues in the previous methods reviewed above. First,
none of them aims to find P by directly minimizing p(PD) which is our real target.
Thus the objectives of these methods are not optimal. For their obtained solutions P,

w(PD) is usually much larger than the Welch bound in . Second, the algorithms
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of Elad and Xu et al. have no convergence guarantee and thus they may produce very
different solutions given slightly different initializations. The convergence issue may
limit their applications in CS.

To address the above issues, we develop Direct Mutual Coherence Minimization
(DMCM) models. First, we show how to construct a low mutual coherence matrix M
by minimizing p(IM) directly. This leads to a nonconvex and nonsmooth problem. To
solve our new problem efficiently, we first smooth the objective function such that its
gradient is Lipschitz continuous. Then we solve the approximate problem by proximal
gradient which has convergence guarantee. Second, inspired by DMCM, we propose a
DMCM based Projection (DMCM-P) model which aims to find a projection P by min-
imizing u(PD) directly. To solve the nonconvex DMCM-P problem, we then propose
an alternating minimization method and prove its convergence. Experimental results
show that our DMCM-P achieves the lowest mutual coherence of PD and also leads

to the best signal recovery performance.

2. Low Mutual Coherence Matrix Construction

In this section, we show how to construct a matrix M € R™*" with low mutual
coherence (M) by DMCM. Assume that each column of M is normalized to unit
Euclidean length. Then we aim to find M by the following DMCM model

. _ T
i (M) = MM

(15)
s.t. [Mll,=1,i=1,--- ,n,
where M; (or (M);) denotes the i-th column of M. The above problem is equivalent

to

min  f(M) = |[M"M —1IJ| _
i, f) = | H -

s.t. |Mll,=1,i=1,--- |n,
where ||A||oc = max; j |a;;| denotes the {o.-norm of A. Solving the above problem
is not easy since it is nonconvex and its objective is nonsmooth. In general, due to
the nonconvexity, the globally optimal solution to (T6) is not computable. We instead

consider finding a locally optimal solution with convergence guarantee.



First, to ease the problem, we adopt the smoothing technique in [18]] to smooth the
nonsmooth /-norm in the objective of (I6). By the fact that the ¢1-norm is the dual
norm of the /,-norm, the objective function in @[) can be rewritten as

_ T _ _ T _
f(M) = || M™™ IHOO_H\I}T\?Z (M'M —1,V),

where || V|1 = 37, [vi;| denotes the ¢1-norm of V. Since {V[[[V|[y < 1} is a bound-

ed convex set, we can define a proximal function d(V') for this set, where d(V) is con-

tinuous and strongly convex on this set. A natural choice of d(V) is d(V) = 1||V|

2
2 F

where || - || denotes the Frobenius norm of a matrix. Hence, we have the following
smooth approximation of f defined in (16):

_ TNy _ _r 2
fp(M)—l‘{,r‘llfJ}é(MM LV) 2||V||F7 (17)

where p > 0 is a smoothing parameter. Note that the smooth function f, can approx-
imate the nonsmooth f with an arbitrary precision and it is easier to be minimized.

Indeed, f and f, have the following relationship

fo(M) < f(M) < f,(M) + pr,

where 7 = maxv {3 ||VH2F [Vl < 1}. Forany € > 0, if we choose p = £, then
|f(M) — f,(M)| < e. This implies that if p is sufficiently small, then the difference
between f and f, can be very small. This motives us to use f, to replace f in @ and
thus we have the following relaxed problem
min  f,(M)
MeRmxn (] 8)

st [Mifl,=1,i=1,,n

As f, can approximate f at an arbitrary precision, solving @I) can still be regarded
as directly minimizing the mutual coherence. Problem (I8) is easier to solve since
V(M) = M(V* 4+ V*T), where V* is the optimal solution to , is Lipschitz
continuous. That is, for any My, My € R™*™, there exists a constant L = 1/p such
that

IVfp(My) =V fp(Ms)|[r < L[[My — Ma||p .
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Algorithm 1 Solve by Proximal Gradient algorithm.
Initialize: £ = 0, M, € R™*", p > 0, a« = 0.99p, K > 0.

Output: M* = PG(My, p).
while £ < K do

1. Compute V, by solving (21);
2. Compute My, 1 by solving (I9);

3. k=k+1

end while

With the above property, problem can be solved by the proximal gradient method
which updates M in the (k + 1)-th iteration by

M1 = argmin(Vf, (My), M — My) + i M — M, |2
= argin 2 M — (My. — V7, (M) 2 (19)
s.t. [Myll,=1,1=1,--- ,n,
where o > 0 is the step size. To guarantee convergence, it is required that o < p. In

this work, we simply set & = 0.99p. The above problem has a closed form solution by

normalizing each column of My, — aV f,(My), i.e.,

(My, — aV f,(My));
(M — aV f(Mg))ill,

To compute V f,(My) = My(Vy + Vi), where V}, is optimal to when M =

(Mjyy1)i =

(20)

Mg, one has to solve which is equivalent to the following problem

1
Vi =argmin — HV — (MIM,, — I)/pH ,
s.t. [[V]; < 1.

Solving the above problem requires computing a proximal projection onto the ¢; ball.
This can be done efficiently by the method in [19].

Iteratively updating V by and M by leads to the Proximal Gradient (PG)
algorithm for solving problem (I8). We summarize the whole procedure of PG for

10
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in Algorithm [T} For the convergence guarantee, PG can be proved to be convergent.
But we omit its proof since we will introduce a more general solver and provide the
convergence guarantee in Section [3] For the per-iteration cost of Algorithm 1, there
are two main parts. For the update of M by , we need to compute V, f(My) =
M, (V. +M7') which costs O(mn?). For the update of V by (21), we need to compute
M7TM,, which costs O(mn?). Thus, the per-iteration cost of Algorithm 1 is O(m?n +
mn?).

Though PG is guaranteed to converge, the obtained suboptimal solution to (T8)
may be far from optimal to problem which is our original target. There are two
important factors which may affect the quality of the obtained solution by PG. First,
due to the nonconvexity of (I8)), the solution may be sensitive to the initialization of
M. Second, the smoothing parameter p > 0 should be small so that the objective f,
in (T8) can well approximate the objective f in (I6). However, if p is directly set to
a very small value, PG may decrease the objective function value of (I8) very slowly.
This can be easily seen from the updating of M in (I9), where o < p. To address the
above two issues, we use a continuation trick to find a better solution to by solving
(18) with different initializations. Namely, we begin with a relatively large value of
p and reduce it gradually. For each fixed p, we solve (I8) by PG in Algorithm [T|and
use its solution as a new initialization of M in PG. To achieve a better solution, we
repeat the above procedure 7' times or until p reaches a predefined small value ppi,.
We summarize the procedure of PG with the continuation trick in Algorithm 2]

Finally, we would like to emphasize some advantages of our DMCM model (16)
and the proposed solver. A main merit of our model is that it minimizes the mutual
coherence 1(M) directly and thus the mutual coherence of its optimal solution can be
low. Though the optimal solution is in general not computable due to the nonconvexity
of (I6), our proposed solver, which first smooths the objective and then minimizes
it by PG, has convergence guarantee. To the best of our knowledge, this is the first
work which directly minimizes the mutual coherence of a matrix with convergence

guarantee.

11
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Algorithm 2 Solve by PG with continuation trick.
Initialize: p > 0, =0.99p,7 > 1, M, ¢t =0,T > 0.

while ¢ < T do
1. M = PG(M, p) by calling Algorithm|I}
2. p=p/n, a=0.99p;
3.t=t+1

end while

3. Low Mutual Coherence Based Projection

In this section, we show how to find a projection matrix P such that y(PD) can
be as low as possible. This is crucial for signal recovery by CS associated to problem
(5). Similar to the DMCM model shown in (16)), an ideal way is to minimize ;(PD)
directly, i.e.,

min [|(PD)"(PD) — 1|
PcRmXxd o0 (22)
s.t. |[PD;|l,=1,¢=1,---,n.
However, the constraint of is more complex than the one in (I6)), and thus is
much more challenging to solve. We instead consider an approximate model of

based on the following observation.
Theorem 2. For any M1, My € R™*" if M; — My, then un(Mj) — p(Ms).

It is easy to prove the above result by the definition of the mutual coherence of a
matrix. The above theorem indicates that the difference of the mutual coherences of
two matrices is small when the difference of two matrices is small. This motivates us
to find M such that (M) is low and the difference between M and PD is small. So
we have the following approximate model of (22):

min \|MTM—I||OO+%||M—PD||%

PeRm,XdJ\/‘[eRm,xn (23)

S. t. HM1H2 = 1,22 1, , N,

12
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where 3 > 0 trades off ;(M) and the difference between M and PD. To distinguish
from the DMCM model in (I6), in this paper we name the above model as DMCM
based Projection (DMCM-P).

Now we show how to solve . First, we smooth |[M”M — I||o as f,(M)
defined in (I7). Then problem (23) can be approximated by the following problem
with a smooth objective:

iy F(M.P) = f,(M) + 5 [M ~ PD|}} o
st | Mlle =1,i=1,--+ ,n.
When both p and 3 are small, f, is very close to f. Sois u(PD) to (M) because
IM — PD|/r has to be small. Thus solving problem can still be regarded as
minimizing the mutual coherence directly. We propose to alternately update P and M
to solve problem (24).
1. Fix P = P}, and update M by

M1
. 1
= argmin(V £, (M), M — My) + o M — My||7
1 2
JF%HM*PkDHF (25)

(iMk +1PD — pr(Mk))
1 1
atps

= in — ||IM —
arg min 5
F

s. t. HMZHQZ]-v i=1,---,n,

where o > 0 is a step size satisfying v < p. Similar to (I9), the above problem has a
closed form solution. To compute V f,(IM},) in , we also need to compute V, by

solving (2.
2. Fix M = My and update P by solving

Pry = arglgnin IMy.41 — PD|%, (26)

which has a closed form solution P = MkHDT.
Iteratively updating P by and M by leads to the Alternating Minimization
(AM) method for (24). We summarize the whole procedure of AM in Algorithm 3] It

13
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Algorithm 3 Solve by Alternating Minimization.
Initialize: £ = 0, P}, € R™*4, M, € R™*"™, p > 0, a = 0.99p, > 0.

Output: {P*M*} = AM(My, Py, p, 8).
while £ < K do

1. Compute V, by solving (21);

2. Compute My, 1 by solving 25);
3. Compute P, by solving (26);
4. k=k+1.

end while

can be easily seen that the per-iteration cost of Algorithm[3|is O((d +m)n? +n?). We
can prove that the sequence generated by AM converges to a critical point.

We define

07 ifHMngzl,i:17~-~,n,
h(M) = 27)
400, otherwise.

Theorem 3. Assume that D in problem is of full row rank. Let {(My,P)} be
the sequence generated by Algorithm 3} Then the following results hold:

(i) There esits some constants a > 0 and b > 0 such that

h(Mp41) + F(Mpy1, Pry1)

<h(My) + F(My, Py) = a|Myy1 — My |7 = b[[Pryr — Pyf7. (28)

(ii) There exists W11 € Vg F (Mgy1,Pri1) + Oh(My11) and constants ¢ > 0,

d > 0, such that

IWiiillp < ¢Miy1 — Millp + d[[Pr = Prya|l g, (29)

VPF(Mk+1, Pk+1) == 0 (30)

14
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(iii) There exist a subsequence {(My,, Py, )} and (M*, P*) such that (M, Py,,) —
(M*, P*) and F(My,,, Py,) + h(My,) — F(M*, P*) + h(M*).

The proof of Theorem [3|can be found in Appendix. Note that to guarantee the conver-
gence of Algorithm [3] Theorem [3| requires D in problem to be of full row rank.
Such an assumption usually holds in CS since D € R?X™ is an overcomplete dictionary
with d < n.

Based on Theorem |3} we then have the following convergence results.

Theorem 4. (Convergence to a critical point). The sequence {(My,Py)} generated
by Algorithm |3| converges to a critical point of F(M,P) + h(M). Moreover, the
sequence {(My, P)} ha a finite length, i.e.,

+oo
> (@ Migr = M| +b[|Prpy — Pl|) < oo,
k=0

where a > 0 and b > 0 are constants as in Theorem[3|(i).

Theorem {4 is directly obtained by Theorem 2.9 in [20] based on the results in
Threorem[3] Though AM is guaranteed to converge, the obtained solution to may
be far from optimal to problem ([23) which is our original target. In order for (24) to
approximate well, p > 0 should be small. On the other hand, 5 > 0 should also
to be small such that the difference between M and PD is small and thus u(PD) can
well approximate p(M). Similar to Algorithm we use a continuation trick to achieve
a good solution to (23). Namely, we begin with a relatively large value of p > 0 and
B > 0 and reduce them gradually. For each fixed pair (p, ), we solve by AM in
Algorithm [3]and use its solution as a new initialization of P and M in AM. We repeat
the procedure 7' times or until p and 3 reach predefined small values pp,;, and Buyin-
We summarize the procedure of AM with the continuation trick in Algorithm[4]

Finally, we would like to emphasize some advantages of our DMCM-P over pre-
vious methods. The main merit of our DMCM-P is that it is the first model which
minimizes u(PD) directly and the proposed solver also has convergence guarantee.
The algorithms of Elad [9] and Xu et al. [10] are also mutual coherence based meth-

ods. But their objectives are suboptimal and their solvers lack convergence guarantee.

15



Algorithm 4 Solve by AM with continuation trick.
Initialize: p > 0, =0.99p, 8> 0,7 > 1, M,P,t=0,7 > 0.

while ¢ < T do
1. (P,M)=AM(P,M, p, 8) by calling Algorithm

2. p=p/n, a=0.99p;

3. B=8/n;
4. t =1+ 1.
end while
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Figure 1: Plots of the means and standard deviations of mutual coherences of M v.s.

the number m of measurements.

It is worth mentioning that the sparse signal recovery can be guaranteed under some
other different settings and conditions. The low mutual coherence property still plays
an important role. For example, a similar recovery bound can be obtained under the

190 additional assumption that the signs of the non-zero entries of the signal are chosen
at random [21} 22]]. The theory requires incoherence between the sensing and sparsity
bases. The variable density sampling is a technique to recover the signal of highest s-
parsity by optimizing the sampling profile [23]]. The proposed technique which directly
minimizes the mutual coherence may be also applied in the variable density sampling

195 to improve the recovery performance.
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the number m of measurements, where D is a standard Gaussian random matrix.

4. Numerical Results

In this section, we conduct several experiments to verify the effectiveness of our
proposed methods by comparing them with previous methods. The experiments consist
of two parts. The first part shows the values of mutual coherence. The second part

shows the signal recovery errors in CS.

4.1. Comparing the Mutual Coherence

This subsection presents two experiments to show the effectiveness of DMCM and
DMCM-P, respectively. In the first experiment, we show that our DMCM is able to
construct a matrix M € R™*™ with lower mutual coherence than previous methods

do. We compare DMCM with

¢ Random: random matrix whose elements are drawn independently from the s-

tandard normal distribution.

Elad: the algorithm of Elad [9]] with D = 1.
* Xu: the algorithm of Xu et al. [10] with D = 1.

* Duarte: the algorithm of Duarte-Carajalino and Sapiro [[12] with D = 1.

Welch bound: the Welch bound [13] shown in (T3).
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Note that the compared algorithms of Elad [9]], Xu et al. [10] and Duarte-Carajalino
and Sapiro [12] were designed to find a projection P such that M = PD has low
mutual coherence. They can still be compared with our DMCM by setting D as the
identity matrix I.

To solve our DMCM model in (T8), we run Algorithm [2] for 15 iterations and Al-
gorithm [T] for 1000 iterations. In Algorithm 2] we set py = 0.5 and n = 1.2. M is
initialized as a Gaussian random matrix. In the method of Elad, we follow [9] to set
t = 0.2 and 7 = 0.95. In the method of Xu, we try multiple choices of the convex
combination parameter o and set it as 0.5 which results in the lowest mutual coherence
in most cases. The method of Duarte do not need special parameters. All the compared
methods have the same random initializations of P (except Duarte, which has a closed
form solution).

The compared methods are tested on three settings with different sizes of M €
R™>™: (I)m = [6 : 2 : 16],n = 60; (2) m = [10 : 5 : 35],n = 120; and (3)
m = [10 : 10 : 50],n = 180. Note that the constructed matrices may not be the
same for the compared methods with different initializations. So for each choice of
size (m,n), we repeat the experiment for 100 times and record the means and standard
deviations of the mutual coherences of the constructed matrices M. The means and
standard deviations of mutual coherences v.s. the number m of measurements are
shown in Figure|l| It can be seen that the matrix constructed by our DMCM achieves
much lower mutual coherences than previous methods do. The main reason is that our
DMCM minimizes the mutual coherence of M directly, while the objectives of all the
previous methods are indirect. It can also be seen that the standard deviations of our
method is close to zero, while some other compared methods may not be stable in some
cases. A possible reason is that the solver of our method has convergence guarantee,
while other methods do not.

For the second experiment in this subsection, we show that for given D € RI*™ our
DMCM-P is able to compute a projection P € R™*? guch that PD € R™*" has low
mutual coherence. We choose D to be a Gaussian random matrix in this experiment. To
solve our DMCM-P model in (23)), we run Algorithm [ for 15 iterations and Algorithm
B] for 1000 iterations. In Algorithm ] we set pg = 0.5, 5 = 2and n = 1.2. P is
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Figure 3: Plots of the means and standard deviations of mutual coherences of PD v.s.
the number m of measurements, where the elements of D are uniformly distributed in

[0,1].

Table 1: Comparison of running time (in seconds) of DMCM-P, Elad, Xu and Duarte
on problem @ under different settings.

DMCM-P | Elad | Xu | Duarte

m = 10, d = 30, n = 60 181 5 5 | 0.0033
m = 20,d =60,n =120 582 8 8 0.004
m = 30, d =90, n = 180 838 14 12 | 0.004

initialized as a Gaussian random matrix.

We compare our DMCM-P with the algorithms of Elad [9], Xu et al. [10] and
Duarte-Carajalino and Sapiro [12] on the mutual coherence of PD. We test on three
settings: (1)m = [6: 2 : 16],n = 60, d = 30; (2) m = [10 : 5 : 35], n = 120, d = 60;
and (3) m = [10 : 10 : 50], n = 180, d = 90. Figure 2| shows the mutual coherence of
PD as a function of the number m of measurements. It can be seen that our DMCM-P
achieves the best projection such that PD has the lowest mutual coherences in all the
three settings. So are the standard deviations. Note that our algorithm does not use any
special property of D. So it is expected to work for D in other distributions as well.

We test our method in the case that the elements of D are uniformly distributed in [0, 1]
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and report the results in Figure[3] It can be seen that our method still outperforms other
methods in both mean and standard deviation.

Furthermore, Figure |4| shows the distribution of the absolute values of inner prod-
ucts between distinct columns of PD with m = 20, n = 120, and d = 60. It can be
seen that our DMCM-P has the shortest tail, showing that the number of elements in
the Gram matrix that are closer to the ideal Welch bound is larger than the compared
methods. Such a result is consistent with the lowest mutual coherences shown in Figure
2l

Finally, we report the running time of the algorithms of Elad, Xu, Duarte and our
DMCM-P in Table[I} The settings of the algorithms are the same as those in Figure
and the running time is reported based on different choices of m, d and n. It can be
seen that Duarte is the fastest method since it has a closed form solution. Our DMCM-

P is not very efficient since we use the continuation trick in Algorithm[@] which repeats
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Algorithm [3] many times. Note that speeding up the algorithm, although valuable, is
not the main focus of this paper. Actually, for many applications the projection matrix

P can be computed offline. So we leave the speeding-up issue as future work.

4.2. Comparing the CS Performance

In this subsection, we apply the optimized projection by our DMCM-P to CS. We
first generate a 7T-sparse vector ¢ € R”™, which constitutes a sparse representation
of signal x = Da, where x € R<. The locations of nonzeros are chosen randomly
and their values obey a uniform distribution in [—1, 1]. We choose the dictionary D €
RI%™ a9 a Gaussian random matrix, the DCT matrix and the matrix learned by K-SVD,
respectively. Then we apply different projection matrices P learned by our DMCM-P,
random projection matrix, and the algorithms of Elad [9], Xu et al. [10] and Duarte-
Carajalino and Sapiro [12]] to generate the compressed y viay = PDa. At last, we
solve problem by OMP to obtain &. We compare the performance of projection
matrices computed by different methods using the relative reconstruction error ||x —

x*||2/||x*||2 and the support recovery rate |support(x) N support(x*)|/|support(x*)

)

where x* is the ground truth. A smaller reconstruction error and larger support recovery
rate mean better CS performance.

We conduct two experiments in this subsection. The first one changes the number
m of measurements and the second one changes the sparsity level T'. For every value of
the aforementioned parameters we perform 3000 experiments and calculate the average
relative reconstruction error and support recovery rate.

In the first experiment, we vary m and set n = 60, d = 30, 7' = 2 when D is the
Gaussian random matrix, n = 60, d = 60, T' = 2 when D is the DCT matrix and n =
100, d = 100, T' = 4 when D is the matrix learned by K-SVD, respectively. Figure 5]
[6] and [7] show the average relative reconstruction error (left) and support recovery rate
(right) v.s. the number m of measurements (7" is fixed). In the last case, we follow [24]
to train a dictionary for sparsely representing patches of size 10x 10 extracted from the
image Barbara. This image is of size 512x512 and thus has 253009 possible patches,
considering all overlaps. We extract one tenth of these patches (uniformly spread) to

train on using the K-SVD with 50 iterations. The CS performance improves as m
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increases. Also, as expected, all the optimized projection matrices produce better CS
performance than the random projection does, and our proposed DMCM-P consistently
outperforms the algorithms of Elad, Xu et al. and Duarte-Carajalino and Sapiro.

In the second experiment, we vary the sparsity level 7" and set m = 18, n = 180
and d = 90 when D is the Gaussian random matrix, m = 15, n = 180 and d = 180
when D is the DCT matrix and m = 12, n = 100 and d = 100 when D is the matrix
learned by K-SVD. Figure [§] [0] and [I0] show the average relative reconstruction error
and support recovery rate as a function of the sparsity level T (m is fixed). The CS per-
formance also improves as " decreases. Also, our DMCM-P consistently outperforms
random projection and other deterministic projection optimization methods. This is
due to the low mutual coherence of PD thanks to our optimized projection method as
verified in the previous experiments.

We also test the noisy case. We add Gaussian random noise with 0 mean and 0.01
variance to each element of the observation y and then recover the true signal from this
noisy y. This time we test with D in another different distribution and another choice
of the ratio n/d. We generate elements of D by a uniform distribution on [0,1]. We
choose m = [6 : 2 : 16], d = 40 and n = 60. Besides the sensing matrices constructed
via optimization, we also compare DMCM-P with the the random binary matrix and

Fourier matrix with random selected rows. Figure|l 1{shows the performance compari-
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son based on the relative reconstruction error and support recovery rate v.s. the number
of measurements. It can be seen that our method also achieves the best performance
in almost all cases. The improvement of our method over the random sensing matrices
(using Fourier matrix with random selected rows or the random binary matrices) are

significant.

5. Conclusions

This paper focuses on optimizing the projection matrix in CS for reconstructing
signals which are sparse in some overcomplete dictionary. We develop the first model
which aims to find a projection P by minimizing the mutual coherence of PD di-
rectly. We solve the nonconvex problem by alternating minimization and prove the
convergence. Simulation results show that our method does achieve much lower mutu-
al coherence of PD, and also leads to better CS performance. Considering that mutual
coherence is important in many applications besides CS, we expect that the proposed
construction will be useful in many other applications as well, besides CS.

There is some interesting future work. First, though we give the first solver with
convergence guarantee in Algorithm|T]for (I6), the obtained solution is not guaranteed
to be globally optimal due to the nonconvexity of the problem. It is interesting to inves-
tigate when the obtained solution is globally optimal. Second, currently the proposed
method is not efficient, and it is valuable to find faster solvers. For example, we may
consider solving (T6) and by Alternating Direction Method of Multiplier (ADM-
M) after introducing some auxiliary variables, which may be more efficient than our
current solvers. But proving its convergence for nonconvex problems, (I6) and (22),

will be challenging.
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Appendix

In this section, we give the proof of Theorem 3]
Definition 2. [25| 126/] Let g be a proper and lower semicontinuous function.

1. For a given x € dom g, the Frechét subdifferential of g at x, written as ég(x), is

the set of all vectors u € R™ which satisfies

yAXy—x ly — x|

> 0.

345 2. The limiting-subdifferential, or simply the subdifferential, of g at x € R", written

as 0g(x), is defined through the following closure process

dg(x)

{ueR": Ix; — x,9(xx) = 9(x),
u; € dg(xp) = u, k — oo}
Proposition 1. [25] 26| The following results hold:

1. In the nonsmooth context, the Fermat’s rule remains unchanged: If x € R" is a

local minimizer of g, then 0 € Jg(x).

350 2. Let (xg,uy) be a sequence such that x;, — X, up — u, g(xx) — g(x) and

uy, € 99(xk). Then u € dg(x).

3. If f is a continuously differentiable function, then O(f+g)(x) = V f(x)+0g(x).

Proof of Theorem 3} First, can be rewritten as
My 41
. 1 2
_argrrlt/l[n<pr(Mk),M — M) + % M — My ||%
1
+ 57 |[M = Py D% + h(M).
26
By the optimality of My, we have
h(Mpy1) + (Vfp (M), M1 — My)

1 1
+ 5 IMis1 = Ml + 55 Mirr — PiDIl7
1

<h(My) + 55

My, — PD||3. 31
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From the Lipschitz continuity of V f,(M), we have

F(Mp1,Py)
1
=fp(Mg41) + %HMkH - P,D||%
<fp(Mg) + (Vfp(Mg), My 41 — My) (32)

1 1
+ %”Mk-&-l — My |3 + ﬁ”Mk—i—l —PD||3.
Add (31) and (32), we have

h(Mgt1) + F(My41,Py)
1 1

<HM) + 1,00 — (50 = o) IMess — Ml

1
il -P 2
+ 55IMs — PiDI (33)

(M) + M, Po) - (5 5

— ) M1 — Mg |3
s 35 ) Mkt = My

Note that F(My41,P) = ﬁ”MkH —PD|% is %02 (D)-strongly convex, where

Omin (D) denotes the smallest singular value of D and it is positive since D is of full

sss  rank. Then by Lemma B.5 in [27] and the optimality of P, to (26), we have

1
F(Mps1,Peia) £ F(Mien Pr) = 55000(D) [Prrs = Pl (34)
Combining (33) and (34) leads to
h(Mpt1) + F(Mpg1, Pry)
<h(My) + F(My, Py) — (o0 = L) My = My — 5-0%6,(D) [Prr — Pyl
< k ks Pk 50 3 k1 kllF = 55min k+1 kll -
(35)
Second, by the optimality of M1, we have
1
0 €Oh(Mp41) + Vf,(My) + E(Mk-‘rl — M)
1
+ B(Mkﬂ - P;.D). (36)
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Thus, there exists Wy 1 € VypF (M1, Pry1) + Oh(Mjgy1), such that

1
Wit €V f(Mgi1) + B(MkJrl —Pi11D) + 0h(My41)
1

=V fp(My) + B(MkJrl — P;D) + 0h(Mj41) (37)
+ (£ (M) = £,(My)) + %(Pk ~Py)D.

Then, combining (36) and leads to

1
Weeall, < \ VF(Mi) + £(Mys1 — PeD) + Oh(Ms)
F
1
+ 16 (Mic) = (M) + 5 Pk~ Prya)Dll G38)

1 1 1
<3 M =Ml + 2 [Mys = Myl + 5 IDJ* |Pr — Prst
(39)

where uses the property that V f,(M) is Lipschitz continuous with the Lipschitz

constant 1/p. Also, by the optimality of P, we have
0 =VpF(Myi1,Pri1) = (Mpy1 — PpaD)DT (40)

Third, note that (M, P) is coercive, i.e., F'(M,P) is bounded from below and
F(M,P) — 400 when ||[M, P]||F — +o0. It can be seen from that F'(Mp, Py)
is bounded. Thus {My, P} is bounded. Then there exists an accumulation point
(M*,P*) and a subsequence {My,, Py, } such that (My,,Py,) — (M*,P*) as
J — +4oo. Since F'(M,P) is continuously differentiable, we have F'(My,,Py,) —
F(M*,P*). As h(My,) = O forall k and the set {M : |[M;|la =1,i =1,--- ,n}is
closed, we have h(M*) = 0 and F'(My,, Py,) + h(My;) — F(M*,P*) + h(M*).
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