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Low dimensional structures in visual data

Learning by using the underlying low dimensional 

structure of data is important.



Compressive Sensing

• Compressive sensing: learning by using sparse vector structure

• Face recognition (J. Wright, et al., TPAMI, 2009)



Low-rank Matrix Recovery

• Low-rank matrix: sparse singular values

• Low-rank structure is common in visual data

• Low-rank models, e.g., robust PCA, and 

matrix completion, have many applications
• Background modeling

• Removing shadows from face images

• Image alignment

• Many others…

E. J. Cand` es, X. D. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the ACM, 2011



Multi-dimensional Data: Tensor



Structured Sparsity

Sparse vector Low rank matrix Low rank tensor

This work



Low-rank Tensor Learning Is Challenging

• The tensor rank and tensor nuclear norm are not well defined 
• Tensor CP-rank and its convex envelop are NP-hard to compute

• Tucker rank and Sum of Nuclear Norm (SNN)

• SNN is a loose convex surrogate of Tucker rank

• Recently, we propose a new tensor nuclear norm induced by tensor-
tensor product for low tubal rank recovery

Canyi Lu,et al.. Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex 
optimization. CVPR. 2016.



Notations

• Block circulant matrix of 

• Two operators

frontal slices



Tensor-Tensor Product

Misha E Kilmer and Carla D Martin. Factorization strategies for third-order tensors. Linear Algebra and its Applications, 2011

• Tensor-tensor product is a natural extension of matrix-matrix product.



Tensor-SVD

Canyi Lu,et al.. Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex 
optimization. CVPR. 2016.



Problem I: Low-rank Tensor Recovery from 
Gaussian Measurements
• Given a linear map                                     and the observations              

for                              with tubal rank

• Goal: to recover the low-rank tensor       from the observations 

• Method: recovery by convex optimization

• Question: what is the number of measurements     required for exact 
recovery, i.e.,             ?  



Main Result: Low-rank Tensor Recovery from 
Gaussian Measurements

• For Gaussian measurements, the recovery is exact by convex optimization.

• The required number of measurements is                                which is order 
optimal.



Problem II: Low-rank Tensor Completion

• Given an incomplete tensor                              with tubal rank

• Goal: to recover the low-rank tensor       from partial observations  

• Method: recovery by convex optimization

• Question: any exact recovery guarantee by convex optimization?  



Main Result: Low-rank Tensor Completion

• Exact recovery when the sampling complexity is of the order



Experiment: recovery from Gaussian 
measurements

Exact 
recovery



Experiment: low-rank tensor completion
Exact 

recovery



Experiment: tensor completion for image recovery 



Experiment: tensor completion for video recovery 



Experiment: tensor completion for video recovery 



Conclusions

• Tensor nuclear norm is a recently proposed convex surrogate for the pursuit 
of tensor tubal rank induced by the tensor-tensor product

• Theoretical guarantee for low tubal rank tensor recovery from Gaussian 
measurements

• Theoretical guarantee for low tubal rank tensor completion


