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Low dimensional structures in visual data
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Learning by using the underlying low dimensional

structure of data is important.



Compressive Sensing

 Compressive sensing: learning by using sparse vector structure
min||z|i,s.t. y = Ax

* Face recognition (J. Wright, et al., TPAMI, 2009)
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Low-rank Matrix Recovery
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* Low-rank models, e.g., robust PCA, and fe s 2 du i nn 0 0 e
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matrix completion, have many applications | T
* Background modeling
 Removing shadows from face images
* Image alighment
* Many others...

E.J. Cand  es, X. D. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the ACM, 2011



Multi-dimensional Data: Tensor
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(a) Face images (b) Videos



Structured Sparsity
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Low-rank Tensor Learning Is Challenging

* The tensor rank and tensor nuclear norm are not well defined
e Tensor CP-rank and its convex envelop are NP-hard to compute

rank, (X )—mln{R\?C Za{l)oa,. --oaim)}.

e Tucker rank and Sum of Nuclear Norm (SNN)

rank.(X') = (Hmk (X':”) rank (X'zi:') - rank (X”":')) Zib:l ||X(E) ||>+:

* SNNis a loose convex surrogate of Tucker rank

* Recently, we propose a new tensor nuclear norm induced by tensor-
tensor product for low tubal rank recovery

Canyi Lu,et al.. Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex
optimization. CVPR. 2016.



Notations

e Block circulant matrix of A ¢ rrixrexns

T AL Alms) 0 A2)7
A2) AL . AB)
bcirc(ﬂ) =
| A(ns)  Alna=1) . A()]

* TwWo operators

unfﬂld(A:l = _ ; fcald(unfold(A)) = A.
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Tensor-Tensor Product

* Tensor-tensor product is a natural extension of matrix-matrix product.

Definition 1. (t-product) [Kilmer and Martin, 2011] Let A € R™*"2%"3 qnd B € R™2*!X"s Then the t-product A * B is
defined to be a tensor C € R™ XIxng

C=AxB= fold(bcirc(A) . unfold(B)).

Definition 2. (Conjugate transpose) [Lu et al., 2016; 2018a] The conjugate transpose of a tensor A of size ny X na X ng is the
ny X ny X ng tensor A* obtained by conjugate transposing each of the frontal slice and then reversing the order of transposed

frontal slices 2 through ns.

Definition 3. (Identity tensor) [Kilmer and Martin, 2011] The identity tensor T € R™*"™*"3 js the tensor whose first frontal
slice is the n X n identity matrix, and other frontal slices are all zeros.

Definition 4. (Orthogonal tensor) [ Kilmer and Martin, 2011] A tensor @ € R"*"*"3 s orthogonal if it satisfies
Q" +xQ=09%xQ =T

Definition 5. (F-diagonal Tensor) [Kilmer and Martin, 2011] A tensor is called f-diagonal if each of its frontal slices is a
diagonal matrix.

Misha E Kilmer and Carla D Martin. Factorization strategies for third-order tensors. Linear Algebra and its Applications, 2011



Tensor-SVD

Theorem 1. (T-SVD) [Lu et al., 2018a; Kilmer and Martin, 2011] Let A € R™*"2*"3 Then it can be factored as
A=U*x8 % V",

where U € R™ > X3 Y ¢ R™2XM2XN8 gre orthogonal, and 8 € R™ *"2*"s s q f-diagonal tensor.
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Fig. 2: The t-SVD of an n; X ny x n3 tensor.

Definition 6. (Tensor tubal rank) [Lu et al., 2018al] For A € R™ *"2*"s the tensor tubal rank, denoted as rank,(\A), is
defined as the number of nonzero singular values of S, where 8 is from the t-SVD of A =U « S « V™. We can write

rank,(A) = #{i,8(i,1,1) # 0} = #{i,S(4,14,:) # 0}.

Definition 7. (Tensor nuclear norm) [Lu et al., 2018a] Let A = U * S * V™ be the t-SVD of A € R™*"2*"3_ The tensor
nuclear norm of A is defined as the sum of the tensor singular values, i.e., ||Al|. = > ._, 8(i,i,1), where r = rank,(A).

Canyi Lu,et al.. Tensor robust principal component analysis: Exact recovery of corrupted low-rank tensors via convex
optimization. CVPR. 2016.



Problem I: Low-rank Tensor Recovery from
Gaussian Measurements

* Given alinear map ¢ : Rr:xn2xns _y gmand the observations y = ®(M)

for M € R™*"2x"s3 with tubal rank 7.

* Goal: to recover the low-rank tensor m from the observations y-
* Method: recovery by convex optimization

-

X = a.rgn}%n | X |4, s.t.y = P(X).

* Question: what is the number of measurements m required for exact
recovery, i.e., x = m?



Main Result: Low-rank Tensor Recovery from
Gaussian Measurements

Theorem 4. Let ® : R"t*"2*"3 — R"™ be a random map with i.i.d. zero-mean Gaussian entries having variance % and
M € R™"*"2X"3 e g tensor of tubal rank r. Then, with high probability, we have:

(1) exact recovery: X = M, where X is the unique optimum of (3), provided that m > 3r(n, +ng — r)nz + 1;
(2) robust recovery: | X — M||r < 20 \where X is optimal to

-

X = a.rgm.%n | X ||, s.t. |y — 2(X)]2 <4, (7)

3r(ni+ne—r)ng+3/2

provided that m > R

* For Gaussian measurements, the recovery is exact by convex optimization.

* The required number of measurements is O(r(n; +n2 —r)nz) which is order
optimal.



Problem II: Low-rank Tensor Completion

* Given an incomplete tensor M e R™">*"2xnswith tubal rank r.
* Goal: to recover the low-rank tensor M from partial observations Pq(M)
* Method: recovery by convex optimization

11}%11 HXH* s.t. Pa(X) = Pa(M),

* Question: any exact recovery guarantee by convex optimization?



Main Result: Low-rank Tensor Completion

Theorem 6. Let M € R™ *"2%"3 with rank,(M) = r and the skinny t-SVD be M =U x 8 x V™. Suppose that the indices
Q) ~ Ber(p) and the tensor incoherence conditions (9)-(10) hold. There exist universal constants cg, ¢1,ca > 0 such that if

copir log? (n(1yn3)

noyns

then M is the unique solution to (8) with probability at least 1 — ¢y (ny + no) 2.

* Exact recovery when the sampling complexity is of the order O(rnynslog®(nayns)).



Experiment: recovery from Gaussian
measurements

-~

X = a.rgmai?n | X+, sty = ®(X).

r = rank,(Xg) = 0.2n

n | rank(X0) | m | k(&) | BFzZele
10 2 541 2 1.2e—9
20 1 2161 4 1.6e—0
30 f: 4861 f 1.5e—9
r = rank,(Xg) = 0.3n
n rank; (X0 ) m fﬂnkt(f‘%) ”T;;ﬂ
10 3 766 3 1.6e—9
20 f 3061 6 1.2e—9
30 9 6386 9 1.2¢-9

Table 1: Exact low tubal rank tensor recovery from Gaussian mea-

surements with sufficient number of measurements.
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Figure 2: Phase transitions for low tubal rank tensor recovery from
Gaussian measurements. Fraction of correct recoveries 1S across
10 trials, as a function of “22E72=7)"3 (y_axis) and sampling rate
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Experiment: low-rank tensor completion

min || X||., s.t. Pa(X) = Pa(M), 3
X 35
25 -
Xo € R"X™X" p —rank (Xg).m = pn®,d, =r(Zn — )1 5 o6
n T I p rank, ( X) w . | =20
50 3 4 0.47 3 3.9e—7 "
50 5 3 0.57 5 3.5e—7 10
50 | 10 2 0.72 10 4.1e—7 L
100 | 5 4 0.39 5 1.4e—6 S 5
100 | 10 3 0.57 10 9.2e—7 S L e
100 15 2 .56 15 8. 4e—T 01 02 03 04 05 06 0.7 0.8 0.5 01 02 03 04 05 06 07 0.8 09
200 | 5 4 0.20 5 4.2e—6 P P
200 | 10 3 0.29 10 3.2e—6 (a) n = 40 (b) n = 50
200 20 2 0.38 20 3.1e—6
300 | 10 | 4 | 026 10 5.1e—6 Figure 3: Phase transitions for tensor completion. Fraction of correct
300 | 20 3 0.39 20 4.2e—6 recoveries is across 10 trials, as a function of tubal rank r (y-axis)
300 | 30 ] 3 | 057 30 2.9e—6 and sampling rate p (x-axis). The results are shown for different sizes

Table 2: Exact tensor completion on random data. of M € R"™"*™: (a) n = 40; (b) n = 50.



Experiment: tensor completion for image recovery

(a) orignal image (b) observed image
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Figure 6: Comparison of the PSNR values obtained by using LRMC, LRTC, TMac and TNN. The rate of observed entries is p = 0.3.



Experiment: tensor completion for video recovery

(a) an example frame (b) observed frame (c) LRMC (d) LRTC (e) TMac (f) TNN

Figure 9: Examples for video recovery performance comparison. (a) Example frames from the sequences Coastguard, Hall, Akiyo and Mobile;
(b) frames with partially observed entries (the rate is p = 0.5); (¢)-(f) recovered frames by LRMC, LRTC, TMac and TNN, respectively.



Experiment: tensor completion for video recovery

Table 3: PSNR values of the compared methods.

ID Videos | LRMC | LRTC | TMac | TNN
1 Highway 13.8 18.0 19.2 20.8
2 Coastguard 9.6 11.2 13.1 17.5
3 Hall 9.3 17.4 18.7 22.0
4 Carphone 10.9 16.7 18.3 20.3
5 Bridge (close) 10.5 17.8 17.6 20.9
6 News 8.6 154 16.7 20.3
7 Grandma 11.2 20.1 20.2 25.7
8 Suzie 14.5 17.4 19.9 19.7
9 Miss America 15.8 214 248 25.7
10 Contamner 3.4 17.8 17.3 29.0
11 Foreman 9.3 14.0 16.1 18.6
12 | Mother-daughter 12.7 15.8 19.8 229
13 Silent 11.5 17.6 19.1 229
14 Akiyo 11.2 20.2 20.4 27.0
15 Claire 14.5 23.2 25.7 274




Conclusions

* Tensor nuclear norm is a recently proposed convex surrogate for the pursuit
of tensor tubal rank induced by the tensor-tensor product

* Theoretical guarantee for low tubal rank tensor recovery from Gaussian
measurements

-,

X = a.rgngn | X, sty = P(X).

* Theoretical guarantee for low tubal rank tensor completion

11‘1%11 H"YH* S.L. ‘Pﬂ("‘t’) — PQ(M),



