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Nonconvex Nonsmooth Low Rank Minimization via Iteratively
Reweighted Nuclear Norm
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and Zhouchen Lin, Senior Member, IEEE

The nuclear norm is widely used as a convex surrogate of
the rank function in compressive sensing for low rank matrix
recovery with its applications in image recovery and signal
processing. However, solving the nuclear norm based relaxed
convex problem usually leads to a suboptimal solution of the
original rank minimization problem. In this paper, we propose to
use a family of nonconvex surrogates of L0-norm on the singular
values of a matrix to approximate the rank function. This leads to
a nonconvex nonsmooth minimization problem. Then we propose
to solve the problem by Iteratively Reweighted Nuclear Norm
(IRNN) algorithm. IRNN iteratively solves a Weighted Singular
Value Thresholding (WSVT) problem, which has a closed form
solution due to the special properties of the nonconvex surrogate
functions. We also extend IRNN to solve the nonconvex problem
with two or more blocks of variables. In theory, we prove that
IRNN decreases the objective function value monotonically, and
any limit point is a stationary point. Extensive experiments on
both synthesized data and real images demonstrate that IRNN
enhances the low rank matrix recovery compared with state-of-
the-art convex algorithms.

Index Terms—Nonconvex low rank minimization, Iteratively
reweighted nuclear norm algorithm

I. INTRODUCTION

BENEFITING from the success of Compressive Sensing
(CS) [2], the sparse and low rank matrix structures

have attracted considerable research interest from the com-
puter vision and machine learning communities. There have
been many applications which exploit these two structures.
For instance, sparse coding has been widely used for face
recognition [3], image classification [4] and super-resolution
[5], while low rank models are applied to background mod-
eling [6], motion segmentation [7], [8] and matrix comple-
tion [9].

Conventional CS recovery uses the L1-norm, i.e., ‖x ‖1 =∑
i |xi|, as the surrogate of the L0-norm, i.e., ‖x ‖0 =

#{xi 6= 0}, and the resulting convex problem can be solved by
fast first-order solvers [10], [11]. Though for certain problems,
the L1-minimization is equivalent to the L0-minimization un-
der certain incoherence conditions [12], the obtained solution
by L1-minimization is usually suboptimal to the original L0-
minimization since the L1-norm is a loose approximation
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TABLE I: Popular nonconvex surrogate functions of ||θ||0 and
their supergradients (see Section II-A).

Penalty Formula g(θ), θ ≥ 0, λ > 0 Supergradient ∂g(θ)

Lp [13] λθp

{
+∞, if θ = 0,

λpθp−1, if θ > 0.

SCAD [14]


λθ, if θ ≤ λ,
−θ2+2γλθ−λ2

2(γ−1)
, if λ < θ ≤ γλ,

λ2(γ+1)
2

, if θ > γλ.


λ, if θ ≤ λ,
γλ−θ
γ−1

, if λ < θ ≤ γλ,

0, if θ > γλ.

Logarithm [15] λ
log(γ+1)

log(γθ + 1)
γλ

(γθ+1) log(γ+1)

MCP [16]

λθ − θ2

2γ
, if θ < γλ,

1
2
γλ2, if θ ≥ γλ.

{
λ − θ

γ
, if θ < γλ,

0, if θ ≥ γλ.

Capped L1 [17]

{
λθ, if θ < γ,

λγ, if θ ≥ γ.


λ, if θ < γ,

[0, λ], if θ = γ,

0, if θ > γ.

ETP [18] λ
1−exp(−γ) (1 − exp(−γθ)) λγ

1−exp(−γ) exp(−γθ)

Geman [19] λθ
θ+γ

λγ

(θ+γ)2

Laplace [20] λ(1 − exp(− θ
γ

)) λ
γ

exp(− θ
γ

)

of the L0-norm. This motivates us to approximate the L0-
norm by nonconvex continuous surrogate functions. Many
known nonconvex surrogates of L0-norm have been proposed,
including Lp-norm (0 < p < 1) [13], Smoothly Clipped
Absolute Deviation (SCAD) [14], Logarithm [15], Minimax
Concave Penalty (MCP) [16], Capped L1 [17], Exponential-
Type Penalty (ETP) [18], Geman [19] and Laplace [20]. We
summarize their definitions in Table I and visualize them in
Figure 1. Numerical studies, e.g. [21], have shown that the
nonconvex sparse optimization usually outperforms convex
models in the areas of signal recovery, error correction and
image processing.

The low rank structure of a matrix is the sparsity defined
on its singular values. A particularly interesting model is the
low rank matrix recovery problem

min
X

λrank(X) +
1

2
||A(X)− b||2F , (1)

where A is a linear mapping, b can be vector or matrix of the
same size as A(X), λ > 0 and ‖ · ‖F denotes the Frobenius
norm. The above low rank minimization problem arises in
many computer vision tasks such as multiple category classi-
fication [22], matrix completion [23], multi-task learning [24]
and low rank representation with squared loss for subspace
segmentation [25]. Similar to the L0-minimization, the rank
minimization problem (1) is also challenging to solve. Thus,
the rank function is usually replaced by the convex nuclear
norm, ‖X ‖∗ =

∑
i σi(X), where σi(X)’s denote the singular

values of X. This leads to a relaxed convex formulation of (1):

min
X

λ‖X ‖∗ +
1

2
||A(X)− b||2F . (2)

The above convex problem can be efficiently solved by many
known solvers [23], [26], [27]. However, the obtained solution
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(a) Lp Penalty [13]
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(b) SCAD Penalty [14]
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(c) Logarithm Penalty [15]
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(d) MCP Penalty [16]
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(e) Capped L1 Penalty [17]
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(f) ETP Penalty [18]
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(g) Geman Penalty [19]
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(h) Laplace Penalty [20]

Fig. 1: Illustration of the popular nonconvex surrogate functions of ||θ||0 (left) and their supergradients (right). For the Lp
penalty, p = 0.5. For all these penalties, λ = 1 and γ = 1.5.

(a) Rank (b) Nuclear norm (c) Lp (d) SCAD (e) Logarithm

(f) MCP (g) Capped L1 (h) ETP (i) Geman (j) Laplace

Fig. 2: Manifold of constant penalty for a symmetric 2× 2 matrix X = [x, y; y, z] for (a) rank penalty, (b) nuclear norm, (c-j)∑
i g(σi(X)), where the choices of the nonconvex g are listed in Table I. For λ in g, we set λ = 1. For other parameters, we

set (c) p = 0.5, (d) γ = 0.6, (e) γ = 5, (f) γ = 1.5, (g) γ = 0.7, (h) γ = 2, (i) γ = 0.5 and (j) γ = 0.8. Note that the manifold
will be different for g with different parameters.

by solving (2) is usually suboptimal to (1) since the nuclear
norm is also a loose approximation of the rank function. Such
a phenomenon is similar to the difference between L1-norm
and L0-norm for sparse vector recovery. However, different
from the nonconvex surrogates of L0-norm, the nonconvex
rank surrogates have not been well studied, e.g., the general
solver for nonconvex low rank minimization problems and
their performances of different surrogates are not clear.

In this paper, to achieve a better approximation of the rank
function, we extend the nonconvex surrogates of L0-norm
shown in Table I onto the singular values of the matrix,
and show how to solve the following general nonconvex
nonsmooth low rank minimization problem [1]

min
X∈Rm×n

F (X) =

m∑
i=1

g(σi(X)) + f(X), (3)

where σi(X) denotes the i-th singular value of X ∈ Rm×n
(we assume that m ≤ n in this work). The penalty function g
and loss function f satisfy the following assumptions:
A1 g : R+ → R+ is continuous, concave and monotonically

increasing on [0,∞). It is possibly nonsmooth.

A2 f : Rm×n → R+ is a smooth function of type C1,1. That
is, the gradient is Lipschitz continuous,

||∇f(X)−∇f(Y)||F ≤ L(f)||X−Y||F , (4)

where for any X,Y ∈ Rm×n, L(f) > 0 is called
Lipschitz constant of ∇f . f(X) is possibly nonconvex.

Note that problem (3) is very general. All the nonconvex
surrogates g of L0-norm in Table I satisfy the assumption
A1. So

∑m
i=1 g(σi(X)) is the nonconvex surrogate of the

rank function1. It is expected that it approximates the rank
function better than the convex nuclear norm. To see this
more intuitively, we show the balls of constant penalties for a
symmetric 2×2 matrix in Figure 2. For the loss function f in
assumption A2, the most widely used one is the squared loss
1
2‖A(X)− b‖2F .

There are some related works which consider the nonconvex
rank surrogates. But they are different from this work. In [28],
[29], the Lp-norm of a vector is extended to the Schatten-p
norm (0 < p < 1) and the iteratively reweighted least squares

1Note that the singular values of a matrix are always nonegative. So we
only consider the nonconvex g defined on R+.
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(IRLS) algorithm is used to solve the nonconvex rank mini-
mization problem with affine constraint. IRLS is also applied
to the unconstrained problem with the smoothed Schatten-p
norm regularizer [30]. However, the obtained solution by IRLS
may not be naturally of low rank, or it may require a lot
of iterations to get a low rank solution. One may perform
the singular value thresholding appropriately to achieve a
low rank solution, but there is no theoretically sound rule to
suggest a correct threshold. Another nonconvex rank surrogate
is the truncated nuclear norm [31]. Their proposed alternating
updating optimization algorithm may not be efficient due to
double loops of iterations and cannot be applied to solving
(3). The nonconvex low rank matrix completion problem
considered in [32] is a special case of our problem (3). Our
solver shown later for (3) is also much more general. A
possible method to solve (3) is the proximal gradient algorith-
m [33], which requires computing the proximal mapping of
the nonconvex function g. However, computing the proximal
mapping requires solving a nonconvex problem exactly. To the
best of our knowledge, without additional assumptions on g
(e.g., the convexity of ∇g [33]), there does not exist a general
solver for computing the proximal mapping of the general
nonconvex g in assumption A1.

In this work, we observe that all the existing nonconvex
surrogates in Table I are concave and monotonically increasing
on [0,∞). Thus their gradients (or supergradients at the nons-
mooth points) are nonnegative and monotonically decreasing.
Based on this key fact, we propose an Iteratively Reweighted
Nuclear Norm (IRNN) algorithm to solve (3). It computes the
proximal operator of the weighted nuclear norm, which has a
closed form solution due to the nonnegative and monotonically
decreasing supergradients. The cost is the same as that for
computing the singular value thresholding which is widely
used in convex nuclear norm minimization. In theory, we prove
that IRNN monotonically decreases the objective function
value and any limit point is a stationary point.

Furthermore, note that problem (3) contains only one block
of variables. However, there are also some works which aim
at finding several low rank matrices simultaneously, e.g., [34].
So we further extend IRNN to solve the following problem
with p ≥ 2 blocks of variables

min
X

F (X) =

p∑
j=1

mj∑
i=1

gj(σi(Xj)) + f(X), (5)

where X = {X1, . . . ,Xp}, Xj ∈ Rmj×nj (assume mj ≤ nj),
gj’s satisfy the assumption A1, and∇f is Lipschitz continuous
defined as follows.

Definition 1: Let f : Rn1×. . .×Rnp → R be differentiable.
Then ∇f is called Lipschitz continuous if there exist Li(f) >
0, i = 1, . . . , n, such that

|f(x)−f(y)−〈∇f(y),x−y〉| ≤
n∑
i=1

Li(f)

2
‖xi−yi‖22, (6)

for any x = [x1; . . . ; xn] and y = [y1; . . . ; yn] with xi,yi ∈
Rni . We call Li(f)’s as Lipschitz constants of ∇f .
Note that the Lipschitz continuity of the multivariable function
f is crucial for the extension of IRNN for (5). This definition is

completely new and it is different from the one block variable
case defined in (4). For n = 1, (6) holds if (4) holds (Lemma
1.2.3 in [35]). This motivates the above definition. But note
that (4) does not guarantee its holding based on (6). So
the definition of the Lipschitz continuity of the multivariable
function is different from (4). This makes the extension of
IRNN for problem (5) nontrivial. A widely used function
which satisfies (6) is f(x) = 1

2 ‖
∑m
i=1 Ai xi−b‖2

2
. Its Lip-

schitz constants are Li(f) = m‖Ai‖22, i = 1, . . . , n, where
‖Ai‖2 denotes the spectral norm of matrix Ai. This can be
easily verified by using the property ‖

∑m
i=1 Ai(xi−yi)‖

2

2
≤

m ‖Ai(xi−yi)‖
2
2 ≤ m‖Ai‖22‖xi−yi ‖22, where yi’s are of

compatible size.
In theory, we prove that IRNN for (5) also has the con-

vergence guarantee. In practice, we propose a new nonconvex
low rank tensor representation problem which is a special case
of (5) for subspace clustering. The results demonstrate the ef-
fectiveness of nonconvex models over the convex counterpart.

In summary, the contributions of this paper are as follows.
• Motivated from the nonconvex surrogates g of L0-norm

in Table I, we propose to use a new family of non-
convex surrogates

∑m
i=1 g(σi(X)) (with g satisfying A1)

to approximate the rank function. Then we propose the
Iteratively Reweighted Nuclear Norm (IRNN) method
to solve the nonconvex nonsmooth low rank minization
problem (3).

• We further extend IRNN to solve the nonconvex nons-
mooth low rank minimization problem (5) with p ≥ 2
blocks of variables. Note that such an extension is non-
trivial based on our new definition of Lipschitz continuity
of the multivariable function in (6). In theory, we prove
that IRNN converges with decreasing objective function
values and any limit point is a stationary point.

• For applications, we apply the nonconvex low rank mod-
els on image recovery and subspace clustering. Extensive
experiments on both synthesized and real-world data well
demonstrate the effectiveness of the nonconvex models.

The remainder of this paper is organized as follows: Sec-
tion II presents the IRNN method for solving problem (3).
Section III extends IRNN for solving problem (5) and pro-
vides the convergence analysis. The experimental results are
presented in Section IV. Finally, we conclude this paper in
Section V.

II. NONCONVEX NONSMOOTH LOW RANK MINIMIZATION

In this section, we show how to solve the general prob-
lem (3), which is a concave-convex problem [36]. Note that
g in (3) is not necessarily smooth. A known example is the
Capped L1 norm (see Figure 1). To handle the nonsmooth
penalty g, we first introduce the concept of supergradient
defined on a concave function.

A. Supergradient of a Concave Function

If g is convex but nonsmooth, its subgradient u at x is
defined as

g(x) + 〈u,y−x〉 ≤ g(y). (7)
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Fig. 3: Supergraidients of a concave function. v1 is a supergradient
at x1, and v2 and v3 are supergradients at x2.

If g is concave and differentiable at x, it is known that

g(x) + 〈∇g(x),y−x〉 ≥ g(y). (8)

Inspired by (8), we can define the supergradient of concave g
at the nonsmooth point x [37].

Definition 2: Let g : Rn → R be concave. A vector v is a
supergradient of g at the point x ∈ Rn if for every y ∈ Rn,
the following inequality holds

g(x) + 〈v,y−x〉 ≥ g(y). (9)

The supergradient at a nonsmooth point may not be unique.
All supergradients of g at x are called the superdifferential of
g at x. We denote the set of all the supergradients at x as
∂g(x). If g is differentiable at x, then ∇g(x) is the unique
supergradient, i.e., ∂g(x) = {∇g(x)}. Figure 3 illustrates the
supergradients of a concave function at both differentiable and
nondifferentiable points.

For concave g, −g is convex, and vice versa. From this fact,
we have the following relationship between the supergradient
of g and the subgradient of −g.

Lemma 1: Let g(x) be concave and h(x) = −g(x). For any
v ∈ ∂g(x), u = −v ∈ ∂h(x), and vice versa.

It is trivial to prove the above fact by using (7) and (9).
The relationship of the supergradient and subgradient shown
in Lemma 1 is useful for exploring some properties of the
supergradient. It is known that the subdiffierential of a convex
function h is a monotone operator, i.e.,

〈u− v,x−y〉 ≥ 0, (10)

for any u ∈ ∂h(x), v ∈ ∂h(y). Now we show that the
superdifferential of a concave function is an antimonotone
operator.

Lemma 2: The superdifferential of a concave function g is
an antimonotone operator, i.e.,

〈u− v,x−y〉 ≤ 0, (11)

for any u ∈ ∂g(x) and v ∈ ∂g(y).
The above result can be easily proved by Lemma 1 and (10).

The antimonotone property of the supergradient of concave
function in Lemma 2 is important in this work. Suppose that
g : R→ R satisfies the assumption A1, then (11) implies that

u ≥ v, for any u ∈ ∂g(x) and v ∈ ∂g(y), (12)

when x ≤ y. That is to say, the supergradient of g is monoton-
ically decreasing on [0,∞). The supergradients of some usual
concave functions are shown in Table I. We also visualize them

in Figure 1. Note that for the Lp penalty, we further define
that ∂g(0) = +∞. This will not affect our algorithm and
convergence analysis as shown later. The Capped L1 penalty is
nonsmooth at θ = γ with its superdifferential ∂g(γ) = [0, λ].

B. Iteratively Reweighted Nuclear Norm Algorithm

In this subsection, based on the above concept of the
supergradient of concave function, we show how to solve the
general nonconvex and possibly nonsmooth problem (3). For
the simplicity of notation, we denote σ1 ≥ σ2 ≥ . . . ≥ σm as
the singular values of X. The variable X in the k-th iteration
is denoted as Xk and σki = σi(X

k) is the i-th singular value
of Xk.

In assumption A1, g is concave on [0,∞). So, by the
definition (9) of the supergradient, we have

g(σi) ≤ g(σki ) + wki (σi − σki ), (13)

where
wki ∈ ∂g(σki ). (14)

Since σk1 ≥ σk2 ≥ . . . ≥ σkm ≥ 0, by the antimonotone
property of supergradient (12), we have

0 ≤ wk1 ≤ wk2 ≤ . . . ≤ wkm. (15)

In (15), the nonnegativeness of wki ’s is due to the monotoni-
cally increasing property of g in assumption A1. As we will
see later, property (15) plays an important role for solving the
subproblem of our proposed IRNN.

Motivated by (13), we may use its right hand side as a
surrogate of g(σi) in (3). Thus we may solve the following
relaxed problem to update Xk+1:

Xk+1 = arg min
X

m∑
i=1

g(σki ) + wki (σi − σki ) + f(X)

= arg min
X

m∑
i=1

wki σi + f(X).

(16)

Problem (16) is a weighted nuclear norm regularized problem.
The updating rule (16) can be regarded as an extension of
the Iteratively Reweighted L1 (IRL1) algorithm [21] for the
weighted L1-norm problem

min
x

m∑
i=1

wki |xi|+ l(x). (17)

However, the weighted nuclear norm in (16) is nonconvex (it
is convex if and only if wk1 ≥ wk2 ≥ . . . ≥ wkm ≥ 0 [38]),
while the weighted L1-norm in (17) is convex. For convex f in
(16) and l in (17), solving the nonconvex problem (16) is much
more challenging than the convex weighted L1-norm problem.
In fact, it is not easier than solving the original problem (3).

Instead of updating Xk+1 by solving (16), we linearize
f(X) at Xk and add a proximal term:

f(X) ≈ f(Xk)+ 〈∇f(Xk),X−Xk〉+ µ

2
||X−Xk||2F , (19)

where µ > L(f). Such a choice of µ guarantees the conver-
gence of our algorithm as shown later. Then we use the right
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Algorithm 1 Solving problem (3) by IRNN
Input: µ > L(f) - A Lipschitz constant of ∇f .
Initialize: k = 0, Xk, and wki , i = 1, . . . ,m.
Output: X∗.
while not converge do

1) Update Xk+1 by solving problem (20).
2) Update the weights wk+1

i , i = 1, . . . ,m, by

wk+1
i ∈ ∂g

(
σi(X

k+1)
)
. (18)

end while

hand sides of (13) and (19) as surrogates of g and f in (3),
and update Xk+1 by solving

Xk+1 = arg min
X

m∑
i=1

g(σki ) + wki (σi − σki )

+ f(Xk) + 〈∇f(Xk),X−Xk〉+
µ

2
||X−Xk||2F

= arg min
X

m∑
i=1

wki σi +
µ

2

∥∥∥∥X− (Xk − 1

µ
∇f(Xk)

)∥∥∥∥2

F

.

(20)

Solving (20) is equivalent to computing the proximity operator
of the weighted nuclear norm. Due to (15), the solution to (20)
has a closed form despite its nonconvexity.

Lemma 3: [39, Theorem 4] For any λ > 0, Y ∈ Rm×n
and 0 ≤ w1 ≤ w2 ≤ . . . ≤ ws (s = min(m,n)), a globally
optimal solution to the following problem

minλ

s∑
i=1

wiσi(X) +
1

2
||X−Y||2F , (21)

is given by the Weighted Singular Value Thresholding
(WSVT)

X∗ = USλw(Σ)V T , (22)

where Y = UΣV T is the SVD of Y, and Sλw(Σ) =
Diag{(Σii − λwi)+}.
From Lemma 3, it can be seen that to solve (20) by using (22),
(15) plays an important role and it holds for all g satisfying
the assumption A1. If g(x) = x, then

∑m
i=1 g(σi) reduces to

the convex nuclear norm ‖X ‖∗. In this case, wki = 1 for all
i = 1, . . . ,m. Then WSVT reduces to the conventional Sin-
gular Value Thresholding (SVT) [40], which is an important
subroutine in convex low rank optimization. The updating rule
(20) then reduces to the known proximal gradient method [10].

After updating Xk+1 by solving (20), we then update the
weights wk+1

i ∈ ∂g
(
σi(X

k+1)
)

, i = 1, . . . ,m. Iteratively

updating Xk+1 and the weights corresponding to its singular
values leads to the proposed Iteratively Reweighted Nuclear
Norm (IRNN) algorithm. The whole procedure of IRNN is
shown in Algorithm 1. If the Lipschitz constant L(f) is not
known or computable, the backtracking rule can be used to
estimate µ in each iteration [10].

It is worth mentioning that for the Lp penalty, if σki = 0,
then wki ∈ ∂g(σki ) = {+∞}. By the updating rule of Xk+1

in (20), we have σk+1
i = 0. This guarantees that the rank of

the sequence {Xk} is nonincreasing.

IRNN can be extended to solve the following problem

min
X

m∑
i=1

gi(σi(X)) + f(X), (23)

where gi’s are concave and their supergradients satisfy 0 ≤
v1 ≤ v2 ≤ . . . ≤ vm for any vi ∈ ∂gi(σi(X)), i = 1, . . . ,m.
The truncated nuclear norm ||X ||r =

∑m
i=r+1 σi(X) [31] is

an interesting example. Indeed, let

gi(x) =

{
0, i = 1, . . . , r,

x, i = r + 1, . . . ,m.
(24)

Then ||X ||r =
∑m
i=1 gi(σi(X)) and its supergradients is

∂gi(x) =

{
0, i = 1, . . . , r,

1, i = r + 1, . . . ,m.
(25)

Compared with the alternating updating algorithm in [31],
which require double loops, our IRNN will be more efficient
and with stronger convergence guarantee.

It is worth mentioning that IRNN is actually an instance of
Majorize-Minimization (MM) strategy [41]. So it is expected
to convergence. Since IRNN is a special case of IRNN with
Parallel Splitting (IRNN-PS) in Section III, we only give the
convergence results of IRNN-PS later.

At the end of this section, we would like to state some more
differences between previous work and ours.
• Our IRNN and IRNN-PS for nonconvex low rank mini-

mization are different from previous iteratively reweight-
ed solvers for nonconvex sparse minimization, e.g., [21],
[30]. The key difference is that the weighted nuclear norm
regularized problem is nonconvex while the weighted
L1-norm regularized problem is convex. This makes the
convergence analysis different.

• Our IRNN and IRNN-PS utilize the common properties
instead of specific ones of the nonconvex surrogates of
L0-norm. This makes them much more general than many
previous nonconvex low rank solvers, e.g., [31], [42],
which target at some special nonconvex problems.

III. IRNN WITH PARALLEL SPLITTING AND
CONVERGENCE ANALYSIS

In this section, we consider problem (5) which has p ≥ 2
blocks of variables. We present the IRNN with Parallel S-
plitting (IRNN-PS) algorithm to solve (5), and then give the
convergence analysis.

A. IRNN for the Multi-Blocks Problem (5)
The multi-blocks problem (5) also has some applications

in computer vision. An example is the Latent Low Rank
Representation (LatLRR) problem [34]

min
L,R
‖L‖∗ + ‖R‖∗ +

λ

2
‖L X + X R−X ‖2F . (26)

Here we propose a more general Tensor Low Rank Represen-
tation (TLRR) as follows

min
Pj∈Rmj×mj

p∑
j=1

λj‖Pj‖∗ +
1

2

∥∥∥∥∥∥X −
p∑
j=1

X ×jPj

∥∥∥∥∥∥
2

F

, (27)
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Algorithm 2 Solving problem (5) by IRNN-PS
Input: µi > Li(f) - Lipschitz constants of ∇f .
Initialize: k = 0, Xk

j , and wkji, j = 1, . . . , p, i = 1, . . . ,m.
Output: X∗j , j = 1, . . . , p.
while not converge do

1) Update Xk+1
j by solving problem (28).

2) Update wk+1
ji by (29).

end while

where X ∈ Rm1×...×mp is a p-way tensor and X ×jPj

denotes the j-mode product [43]. TLRR is an extension of
LRR [7] and LatLRR. It can also be applied to subspace
clustering (see Section IV). If we replace ‖Pj‖∗ in (26) as∑mj
i=1 gj(σi(Pj)) with gj’s satisfying the assumption A1, then

we have the Nonconvex TLRR (NTLRR) model which is a
special case of (5).

Now we show how to solve (5). Similar to (20), we update
Xj , j = 1, . . . , p, by

Xk+1
j = arg min

Xj

mj∑
i=1

wkjiσi(Xj) + 〈∇jf(Xk),Xj −Xk
j 〉

+
µj
2
‖Xj −Xk

j ‖2F , (28)

where µj > Li(f), the notation ∇jf denotes the gradient of
f w.r.t. Xj , and

wkji ∈ ∂gj(σi(X
k
j )). (29)

Note that (28) and (29) can be computed in parallel for j =
1, . . . , p. So we call such a method as IRNN with Parallel
Splitting (IRNN-PS), as summarized in Algorithm 2.

B. Convergence Analysis

In this section, we give the convergence analysis of IRNN-
PS for (5). For the simplicity of notation, we denote σkji =

σi(X
k
j ) as the i-th singular value of Xj in the k-th iteration.

Theorem 1: In problem (5), assume that gj’s satisfy the
assumption A1 and ∇f is Lipschitz continuous. Then the
sequence {Xk} generated by IRNN-PS satisfies the following
properties:

(1) F (Xk) is monotonically decreasing. Indeed,

F (Xk)−F (Xk+1) ≥
p∑
j=1

µj − Lj(f)

2
||Xk

j−Xk+1
j ||2F ≥ 0;

(2) lim
k→+∞

(Xk −Xk+1) = 0;

Proof. First, since Xk+1
j is optimal to (28), we have

m∑
i=1

wkjiσ
k+1
ji + 〈∇jf(Xk),Xk+1

j −Xk
j 〉

+
µj
2
||Xk+1

j −Xk
j ||2F

≤
m∑
i=1

wkjiσ
k
ji + 〈∇jf(Xk),Xk

j −Xk
j 〉+

µj
2
||Xk

j −Xk
j ||2F .

It can be rewritten as

〈∇jf(Xk),Xk
j −Xk+1

j 〉

≥ −
m∑
i=1

wkji(σ
k
ji − σk+1

ji ) +
µj
2
||Xk −Xk+1||2F .

Second, since ∇f is Lipschitz continuous, by (6), we have

f(Xk)− f(Xk+1)

≥
p∑
j=1

(
〈∇jf(Xk),Xk

j −Xk+1
j 〉 − Lj(f)

2
||Xk

j −Xk+1
j ||2F

)
.

Third, by (29) and (9), we have

gj(σ
k
ji)− gj(σk+1

ji ) ≥ wkji(σkji − σk+1
ji ).

Summing the above three equations for all j and i leads to

F (Xk)− F (Xk+1)

=

p∑
j=1

nj∑
i=1

(
gj(σ

k
ji)− g(σk+1

ji )
)

+ f(Xk)− f(Xk+1)

≥
p∑
j=1

µj − Lj(f)

2
||Xk+1

j −Xk
j ||2F ≥ 0.

Thus F (Xk) is monotonically decreasing. Summing the above
inequality for k ≥ 1, we get

F (X1) ≥
p∑
j=1

µj − Lj(f)

2

+∞∑
k=1

||Xk+1
j −Xk

j ||2F .

This implies that lim
k→+∞

(Xk −Xk+1) = 0. �

Theorem 2: In problem (5), assume F (X) → +∞ iff
||X ||F → +∞. Then any accumulation point X∗ of {Xk}
generated by IRNN-PS is a stationary point to (5).
Proof. Due to the above assumption, {Xk} is bounded. Thus
there exists a matrix X∗ and a subsequence {Xkt} such that
Xkt → X∗. Note that Xk − Xk+1 → 0 in Theorem 1,
and we have Xkj+1 → X∗. Thus σi(X

kt+1
j ) → σi(X

∗
j )

for j = 1, . . . , p and i = 1, . . . , nj . By Lemma 1, wktji ∈
∂gj(σi(X

kt
j )) implies that −wktji ∈ ∂

(
−gj(σi(Xkt

j ))
)

. From
the upper semi-continuous property of the subdifferential [44,
Proposition 2.1.5], there exists −w∗ji ∈ ∂

(
−gj(σi(X∗j ))

)
such

that −wktji → −w∗ji. Again by Lemma 1, w∗ji ∈ ∂gj(σi(X
∗
j ))

and wktji → w∗ji.
Denote h(Xj ,wj) =

∑nj
i=1 wjiσi(Xj). Since Xkt+1

j is
optimal to (28), there exists Gkt+1

j ∈ ∂h(Xkt+1
j ,wkt

j ), such
that

Gkt+1
j +∇jf(Xkt) + µj(X

kt+1
j −Xkt

j ) = 0. (30)

Let t → +∞ in (30). Then there exists G∗j ∈ ∂h(X∗j ,w
∗
j ),

such that

0 = G∗j +∇jf(X∗) ∈ ∂jF (X∗). (31)

Thus X∗ is a stationary point to (5). �
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(d) Convergence curves

Fig. 4: Low rank matrix recovery comparison of (a) frequency of successful recovery and (b) running time (seconds) on random
data without noise; (c) relative error and (d) convergence curves on random data with noises.

(a) Original image (b) Noisy Image
Image recovery by APGL

(c) APGL
Image recovery by LMaFit

(d) LMaFit
Image recovery by TNNR-ADMM

(e) TNNR-ADMM
lp

(f) IRNN-Lp

logarithm

(g) IRNN-SCAD

Fig. 5: Image recovery comparison by using different matrix completion algorithms. (a) Original image; (b) Image with Gaussian noise
and text; (c)-(g) Recovered images by APGL, LMaFit, TNNR-ADMM, IRNN-Lp, and IRNN-SCAD, respectively. Best viewed in ×2 sized
color pdf file.

IV. EXPERIMENTS

In this section, we present several experiments to demon-
strate that the models with nonconvex rank surrogates outper-
form the ones with convex nuclear norm. We conduct three
experiments. The first two aim to examine the convergence
behavior of IRNN for the matrix completion problem [45]
on both synthetic data and real images. The last experiment
is tested on the tensor low rank representation problem (27)
solved by IRNN-PS for face clustering.

For the first two experiments, we consider the nonconvex
low rank matrix completion problem

min
X

m∑
i=1

g(σi(X)) +
1

2
||PΩ(X−M)||2F , (32)

where Ω is the set of indices of samples, and PΩ : Rm×n →
Rm×n is a linear operator that keeps the entries in Ω un-
changed and those outside Ω zeros. The gradient of squared
loss function in (32) is Lipschitz continuous, with a Lipschitz
constant L(f) = 1. We set µ = 1.1 in IRNN. For the choice of
g, we use five nonconvex surrogates in Table I, including Lp-
norm, SCAD, Logarithm, MCP and ETP. The other three non-
convex surrogates, including Capped L1, Geman and Laplace,
are not used since we find that their recovery performances
are very sensitive to the choices of γ and λ in different cases.
For the choice of λ in g, we use a continuation technique
to enhance the low rank matrix recovery. The initial value of
λ is set to a larger value λ0, and dynamically decreased by
λ = ηkλ0 with η < 1. It is stopped when reaching a predefined

target λt. X is initialized as a zero matrix. For the choice
of parameters (e.g., p and γ) in g, we search them from a
candidate set and use the one which obtains good performance
in most cases.

A. Low Rank Matrix Recovery on Synthetic Data

We first compare the low rank matrix recovery performances
of nonconvex model (32) with the convex one by using nuclear
norm [9] on the synthetic data. We conduct two tasks. The first
one is tested on the observed matrix M without noises, while
the other one is tested on M with noises.

For the noise free case, we generate the rank r matrix
M as ML MR, where the entries of ML ∈ R150×r and
MR ∈ Rr×150 are independently sampled from an N(0, 1)
distribution. We randomly set 50% elements of M to be
missing. The Augmented Lagrange Multiplier (ALM) [46]
method is used to solve the noise free problem

min
X
||X ||∗ s.t. PΩ(X) = PΩ(M). (33)

The default parameters of the released code2 of ALM are used.
For problem (32), it is solved by IRNN with the parameters
λ0 = ||PΩ(M)||∞, λt = 10−5λ0 and η = 0.7. The algorithm
is stopped when ||PΩ(X−M)||F ≤ 10−5. For the choices of
parameters in the nonconvex penalties, we set (1) Lp-norm:
p = 0.5; (2) SCAD: γ = 100; (3) Logarithm: γ = 10; (4)

2Code: http://perception.csl.illinois.edu/matrix-rank/sample code.html.

http://perception.csl.illinois.edu/matrix-rank/sample_code.html
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Image recovery by APGL lp

Image recovery by APGL lp

Image recovery by APGL

Image recovery by APGL lp

Image recovery by APGL lp

(a) Original (b) Noisy image
Image recovery by APGL

(c) APGL
lp

(d) IRNN-Lp

Fig. 6: Comparison of image recovery on more images. (a) Original
images. (b) Images with noises. Recovered images by (c) APGL and
(d) IRNN-Lp. Best viewed in ×2 sized color pdf file.

MCP: γ = 10; and (5) ETP: γ = 0.1. The matrix recovery
performance is evaluated by the Relative Error defined as

Relative Error =
||X̂−M ||F
||M ||F

, (34)

where X̂ is the recovered matrix by different algorithm-
s. If the Relative Error is smaller than 10−3, then X̂ is
regarded as a successful recovery of M. For each r, we
repeat the experiments s = 100 times. Then we define the
Frequency of Success = ŝ

s , where ŝ is the times of successful
recovery. We also vary the underlying rank r of M from 20
to 33 for each algorithm. We show the frequency of success
in Figure 4a. The legend IRNN-Lp in Figure 4a denotes the
model (32) with Lp penalty solved by IRNN. It can be seen
that IRNN for (32) with nonconvex rank surrogates signifi-
cantly outperforms ALM for (33) with convex rank surrogate.
This is because the nonconvex surrogates approximate the rank
function much better than the convex nuclear norm. This also
verifies that our IRNN achieves good solutions of (32), though
its optimal solutions are generally not computable.

For the second task, we assume that the observed matrix M
is noisy. It is generated by PΩ(M) = PΩ(ML MR)+0.1×E,

where the entries of ML, MR and E are independently
sampled from an N(0, 1) distribution. We compare IRNN for
(32) with convex Accelerated Proximal Gradient with Line
search (APGL) [23] which solves the noisy problem

min
X

λ||X ||∗ +
1

2
||PΩ(X)− PΩ(M)||2F . (35)

The default parameters of the released code3 of APGL
are used. For this task, we set λ0 = 10||PΩ(M)||∞ and
λt = 0.1λ0 in IRNN. For the choices of parameters in the
nonconvex penalties, we set (1) Lp-norm: p = 0.5; (2) SCAD:
γ = 1; (3) Logarithm: γ = 0.1; (4) MCP: γ = 1; and
(5) ETP: γ = 0.1. We run the experiments for 100 times
and the underlying rank r is varied from 15 to 35. For each
test, we compute the relative error in (34). Then we show
the mean relative error over 100 tests in Figure 4c. Similar
to the noise free case, IRNN with nonconvex rank surrogates
achieves much smaller recovery error than APGL for convex
problem (35).

It is worth mentioning that though Logarithm seems to
perform better than other nonconvex penalties for low rank
matrix completion from Figure 4, it is still not clear which
one is the best rank surrogate since the obtained solutions are
not globally optimal. Answering this question is beyond the
scope of this work.

Figure 4b shows the running time of the compared methods.
It can be seen that IRNN is slower than the convex ALM.
This is due to the reinitialization of IRNN when using the
continuation technique. Figure 4d plots the objective function
values in each iteration of IRNN with different nonconvex
penalties (in Figure 4d, r = 25.). As verified in theory, it can
be seen that the values are decreasing.

B. Application to Image Recovery

In this section, we apply the low rank matrix completion
models (35) and (3) to image recovery. We follow the experi-
mental settings in [31]. Here we consider two types of noises
on the real images. The first one replaces 50% of pixels with
random values (sample image (1) in Figure 5b). The other
one adds some unrelated texts on the image (sample image
(2) in Figure 5b). The goal is to remove the noises by using
low rank matrix completion. Actually, the real images may
not be of low rank, but their top singular values dominate
the main information. Thus, the image can be approximately
recovered by a low rank matrix. For the color image, there
are three channels. Matrix completion is applied for each
channel independently. We compare IRNN with some state-
of-the-art methods on this task, including APGL, Low Rank
Matrix Fitting (LMaFit)4 [47] and Truncated Nuclear Norm
Regularization (TNNR)5 [31]. For the obtained solution, we
evaluate its quality by the relative error (34) and the Peak
Signal-to-Noise Ratio (PSNR)

PSNR = 10 log10

(
2552

1
3mn

∑3
i=1 ‖X̂i −Mi‖2F

)
, (36)

3Code: http://www.math.nus.edu.sg/∼mattohkc/NNLS.html.
4Code: http://lmafit.blogs.rice.edu/.
5Code: https://sites.google.com/site/zjuyaohu/.

http://www.math.nus.edu.sg/~mattohkc/NNLS.html
http://lmafit.blogs.rice.edu/
https://sites.google.com/site/zjuyaohu/
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(c) Running time

Fig. 7: Comparison of (a) PSNR values; (b) Relative error; and (c) Running time (seconds) for image recovery by different
matrix completion methods.

(a)

(b)

Fig. 8: Some example face images from (a) Extended Yale B and
(b) UMIST databases.

where Mi and X̂i denote the original image and the recovered
image of the i-th channel, and the size of image is m× n.

Figure 5 (c)-(g) show the recovered images by different
methods. It can be seen that our IRNN method for noncon-
vex models achieves much better recovery performance than
APGL and LMaFit. The performances of low rank models (3)
using different nonconvex surrogates are quite similar, so we
only show the results by IRNN-Lp and IRNN-SCAD due to
the limit of space. Some more results are shown in Figure 6.
Figure 7 shows the PSNR values, relative errors and running
time of different methods on all the tested images. It can be
seen that IRNN with all the evaluated nonconvex functions
achieves higher PSNR values and smaller relative error. This
verifies that the nonconvex penalty functions are effective in
this situation. The nonconvex TNNR method is close to our
methods, but its running time is 3∼5 times of ours.

C. Tensor Low Rank Representation

In this section, we consider using the Tensor Low Rank
Representation (TLRR) (27) for face clustering [7], [34].
Problem (27) can be solved by the Accelerated Proximal
Gradient (APG) [10] method with the optimal convergence
rate O(1/K2), where K is the number of iterations. The
corresponding Nonconvex TLRR (NTLRR) related to (27) is

min
Pj∈Rmj×mj

p∑
j=1

mj∑
i=1

g(σi(Pj)) +
1

2

∥∥∥∥∥∥X −
p∑
j=1

X ×jPj

∥∥∥∥∥∥
2

F

,

(37)
where we use the Logarithm function g in Table I, since we
find it achieves the best performance in the previous exper-

TABLE II: Face clustering accuracy (%) on Extended Yale B
and UMIST databases.

LRR LatLRR TLRR NTLRR
YaleB 5 83.13 83.44 92.19 95.31

YaleB 10 62.66 65.63 66.56 67.19
UMINST 54.26 54.09 56.00 58.09

iments. Problem (37) has more than one block of variables,
and thus it can be solved by IRNN-PS.

In this experiment, we use TLRR and NTLRR for face
clustering. Assume that we are given m3 face images from
k subjects with size m1 × m2. Then we can construct a 3-
way tensor X ∈ Rm1×m2×m3 . After solving (27) or (37),
we follow the settings in [48] to construct the affinity matrix
by W = (|P3 | + |PT

3 |)/2. Finally, the Normalized Cuts
(NCuts) [49] is applied based on W to segment the data into
k groups.

Two challenging face databases, Extended Yale B [50] and
UMIST6, are used for this test. Some sample face images
are shown in Figure 8. Extended Yale B consists of 2,414
frontal face images of 38 subjects under various lighting, poses
and illumination conditions. Each subject has 64 faces. We
construct two clustering tasks based on the first 5 and 10
subjects’ face images of this database. The UMIST database
contains 564 images of 20 subjects, each covering a range of
poses from profile to frontal views. All the images in UMIST
are used for clustering. For both databases, the images are
resized into m1 ×m2 = 28× 28.

Table II shows the face clustering accuracies of NTLRR,
compared with LRR, LatLRR and TLRR. The performances of
LRR and LatLRR are consistent with previous works [7], [34].
Also, it can be seen that TLRR achieves better performance
than LRR and LatLRR, since it exploits the inherent spatial
structures among samples. More importantly, NTLRR futher
improves TLRR. Such an improvement is similar to those
in previous experiments, though the support in theory is still
open.

V. CONCLUSIONS AND FUTURE WORK

This work targeted at nonconvex low rank matrix recovery
by applying the nonconvex surrogates of L0-norm on the

6http://www.cs.nyu.edu/∼roweis/data.html.

http://www.cs.nyu.edu/~roweis/data.html
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singular values to approximate the rank function. We observed
that all the existing nonconvex surrogates are concave and
monotonically increasing on [0,∞). Then we proposed a
general solver IRNN to solve the nonconvex nonsmooth low
rank minimization problem (3). We also extend IRNN to solve
problem (5) with multi-blocks of variables. In theory, we
proved that any limit point is a stationary point. Experiments
on both synthetic data and real data demonstrated that IRNN
usually outperforms the state-of-the-art convex algorithms.

There are some interesting future work. First, the experi-
ments suggest that logarithm penalty usually performs better
than other nonconvex surrogates. It is possible to provide some
support in theory under some conditions. Second, one may
consider using the alternating direction method of multiplier
to solve the nonconvex problem with the affine constraint and
proving the convergence. Third, one may consider solving the
following problem by IRNN

min
X

m∑
i=1

g(h(σi(X))) + f(X), (38)

when g(y) is concave and the following problem

min
X

wih(σi(X)) + ||X−Y||2F , (39)

can be cheaply solved. An interesting application of (38) is to
extend the group sparsity on the singular values. By dividing
the singular values into k groups, i.e., G1 = {1, . . . , r1}, G2 =
{r1 + 1, . . . , r1 + r2 − 1}, . . ., Gk = {

∑k−1
i ri + 1, . . . ,m},

where
∑
i ri = m, we can define the group sparsity on

the singular values as ||X ||2,g =
∑k
i=1 g(||σGi ||2). This is

exactly the first term in (38) by letting h be the L2-norm of a
vector. g can be nonconvex functions satisfying the assumption
A1 and specially the absolute convex function.
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