

Tensor Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Tensors via Convex Optimization Canyi Lu¹, Jiashi Feng¹, Yudong Chen, Wei Liu, Zhouchen Lin², Shuicheng Yan¹

- ► **T-product:** For $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, $\mathcal{B} \in \mathbb{R}^{n_2 \times l \times n_3}$, $\mathcal{A} * \mathcal{B} = \text{fold}(\text{bcirc}(\mathcal{A}) \cdot \text{unfold}(\mathcal{B})) \in \mathbb{R}^{n_1 \times l \times n_3}$. C = A * B is equivalent to $\overline{C} = \overline{A}\overline{B}$.
- Conjugate transpose \mathcal{A}^* :, obtained by conjugate transposing each frontal slice of \mathcal{A} .
- Identity tensor $\mathcal{I} \in \mathbb{R}^{n \times n \times n_3}$: the first frontal slice is an identity matrix, and others are zeros.
- Orthogonal tensor: $Q \in \mathbb{R}^{n \times n \times n_3}$ is orthogonal if $Q^* * Q = Q * Q^* = \mathcal{I}$.
- **F-diagonal Tensor:** all frontal slices are diagonal matrices.
- **Tensor SVD (T-SVD):** Let $\mathcal{A} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$. Then it can be factored as

$$\mathcal{A} = \mathcal{U} * \mathcal{S} * \mathcal{V}^*$$

where $\mathcal{U} \in \mathbb{R}^{n_1 \times n_1 \times n_3}$, $\mathcal{V} \in \mathbb{R}^{n_2 \times n_2 \times n_3}$ are orthogonal, and $\mathcal{S} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ is a f-diagonal tensor.

Figure: Illustration of the t-SVD of an $n_1 \times n_2 \times n_3$ tensor.

[1] Kilmer M E, Martin C D. Factorization strategies for third-order tensors. Linear Algebra and its Applications, 2011, 435(3): 641-658.

unfold
$$(\mathcal{A})) = \mathcal{A}.$$

Tensor Nuclear Norm

Tensor tubal rank: the number of nonzero singular tubes of S in t-SVD. denoted as $\operatorname{rank}_{t}(\mathcal{A}) = \#\{i : \mathcal{S}(i, i, :) \neq \mathbf{0}\} = \max_{i} \operatorname{rank}(\bar{\mathcal{A}}^{(\prime)}).$ **Tensor average rank**: rank_a(\mathcal{A}) = $\frac{1}{n_2}$ rank(bcirc(\mathcal{A})) = $\frac{1}{n_2}$ rank($\overline{\mathcal{A}}$).

Note that $rank_a(\mathcal{A}) \leq rank_t(\mathcal{A})$. Tensor nuclear norm: $\|\mathcal{A}\|_* = \frac{1}{n_3} \|\operatorname{bcirc}(\mathcal{A})\|_* = \frac{1}{n_3} \|\bar{\mathcal{A}}\|_*$. Tensor spectral norm: $\|A\| = \|bcirc(A)\| = \|\overline{A}\|$. average rank rank_a(\mathcal{A}) is the tensor nuclear norm $\|\mathcal{A}\|_{*}$.

Main Result: Exact Recovery Guarantee

- perfectly recover both \mathcal{L}_0 and \mathcal{S}_0 from \mathcal{X} ?
- the tensor incoherence conditions with parameter μ if

 $\max_{i=1,\cdots,n_1}$

max *j*=1,...,*n*₂'

Define $n_{(1)} = \max(n_1, n_2)$ and $n_{(2)} = \min(n_1, n_2)$. Then $n_3 \le \mu \le \frac{n_{(1)}n_3}{r}$.

provided that

where ρ_r and ρ_s are positive constants. If $\mathcal{L}_0 \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ has rectangular frontal slices, TRPCA with $\lambda = 1/\sqrt{n_{(1)}n_3}$ succeeds with probability at least $1 - c_1 n_{(1)}^{-c_2}$, provided that $\operatorname{rank}_{t}(\mathcal{L}_{0}) \leq \frac{\rho_{r} n_{(2)} n_{3}}{\mu(\log(n_{(1)} n_{3}))^{2}}$ and $m \leq \rho_{s} n_{1} n_{2} n_{3}$.

(2) When $n_3 = 1$, TRPCA and its recovery guarantee reduce to RPCA.

Optimization by ADMM

- and n_3 SVDs of $n_1 \times n_2$ matrices.
- The per-iteration complexity of ADM

 $\operatorname{argmin} \lambda \|\mathcal{L}\|_* + \frac{1}{2}\|\mathcal{L}\|_*$ $\Leftrightarrow \operatorname{argmin} \lambda \| \overline{\boldsymbol{L}}^{(i)} \|_* + \frac{1}{2} \| \overline{\boldsymbol{L}}^{(i)} \|_*$

¹National University of Singapore, ² Peking University

Theorem: On the set $\{A \in \mathbb{R}^{n_1 \times n_2 \times n_3} | ||A|| \le 1\}$, the convex envelop of the tensor

Assume that $\mathcal{X} = \mathcal{L}_0 + \mathcal{S}_0$, where \mathcal{L}_0 has low tubal rank and \mathcal{S} is sparse. How to

Tensor Incoherence Conditions. For $\mathcal{L}_0 \in \mathbb{R}^{n_1 \times n_2 \times n_3}$, assume that rank_t(\mathcal{L}_0) = r and it has the skinny t-SVD $\mathcal{L}_0 = \mathcal{U} * \mathcal{S} * \mathcal{V}^*$, where $\mathcal{U} \in \mathbb{R}^{n_1 \times r \times n_3}$ and $\mathcal{V} \in \mathbb{R}^{n_2 \times r \times n_3}$ satisfy $\mathcal{U}^* * \mathcal{U} = \mathcal{I}$ and $\mathcal{V}^* * \mathcal{V} = \mathcal{I}$, and $\mathcal{S} \in \mathbb{R}^{r \times r \times n_3}$ is f-diagonal. Then \mathcal{L}_0 is said to satisfy

$$\|\mathcal{U}(i,:,:)\|_{F} \leq \sqrt{\frac{\mu r}{n_{1}n_{3}}},$$
 (2)

$$\|\boldsymbol{\mathcal{V}}(\boldsymbol{j},:,:)\|_{F} \leq \sqrt{\frac{\mu \boldsymbol{r}}{n_{2} n_{3}}},$$

$$\|\boldsymbol{\mathcal{U}}*\boldsymbol{\mathcal{V}}^*\|_{\infty} \leq \sqrt{\frac{\mu r}{n_1 n_2 n_3^2}}.$$

Theorem: Suppose $\mathcal{L}_0 \in \mathbb{R}^{n \times n \times n_3}$ obeys (2)-(4). Fix any $n \times n \times n_3$ tensor \mathcal{M} of signs. Suppose that the support set Ω of S_0 is uniformly distributed among all sets of cardinality m, and that sgn $([S_0]_{iik}) = [\mathcal{M}]_{iik}$ for all $(i, j, k) \in \Omega$. Then, there exist universal constants $c_1, c_2 > 0$ such that with probability at least $1 - c_1 n^{-c_2}$ (over the choice of support of S_0 , $\{\mathcal{L}_0, \mathcal{S}_0\}$ is the unique minimizer to (1) with $\lambda = 1/\sqrt{nn_3}$,

 $\operatorname{rank}_{t}(\mathcal{L}_{0}) \leq \frac{\rho_{r}nn_{3}}{\mu(\log(nn_{3}))^{2}} \text{ and } m \leq \rho_{s}n^{2}n_{3},$

Remarks: (1) The perfect recovery is guaranteed with high probability for $\operatorname{rank}_{t}(\mathcal{L}_{0})$ on the order of $nn_{3}/(\mu(\log nn_{3})^{2})$ and $\|\mathcal{S}_{0}\|_{0}$ on the order of $n^{2}n_{3}$.

The main per-iteration cost lies in the update of \mathcal{L}_{k+1} , which requires computing FFT

$$MM \text{ for TRPCA is } O\left(n_1 n_2 n_3 \log(n_3) + n_{(1)} n_{(2)}^2 n_3\right).$$
$$- \mathcal{A} \|_F^2 = \operatorname{argmin}_{\mathcal{L}} \frac{\lambda}{n_3} \|\bar{\mathcal{L}}\|_* + \frac{1}{2n_3} \|\bar{\mathcal{L}} - \bar{\mathcal{A}}\|_F^2$$
$${}^{(i)} - \bar{\mathcal{A}}^{(i)} \|_F^2$$

Figure: From left to right: original image; noisy image; recovered images by RPCA, SNN (Sum of Nuclear Norms) and TRPCA, respectively.

Experiment: Low-rank Tensor Recovery on Random Data

Set $\lambda = 1/\sqrt{n_{(1)}n_3}$ in all experiments.

► Generate $\mathcal{L}_0 = \mathcal{P} * \mathcal{Q}, \mathcal{P} \in \mathbb{R}^{n \times r \times n}, \mathcal{Q} \in \mathbb{R}^{r \times n \times n} \sim \mathcal{N}(0, 1/n).$

The support set Ω (with size m) of S_0 is chosen uniformly at random.

Table: Correct recovery for random problems of varying size.

							$\mathbf{}$				•		
$\mathcal{L}_0) = 0.1 n, \ m = \ \mathcal{S}_0 \ _0 = 0.1 n^3$ $r = \mathrm{rank_t}(\mathcal{L}_0) = 0.1 n, \ m = \ \mathcal{S}_0 \ _0 = 0.2 n^3$													
$ank_{t}(\hat{\mathcal{L}})$	$\ \hat{oldsymbol{\mathcal{S}}}\ _0$	$rac{\ \hat{\mathcal{L}}-\mathcal{L}_0\ _F}{\ \mathcal{L}_0\ _F}$	$rac{\ \hat{\mathcal{S}}-\mathcal{S}_0\ _{\mathcal{F}}}{\ \mathcal{S}_0\ _{\mathcal{F}}}$			n	r	т	$rank_t(\hat{\mathcal{L}})$	$\ \hat{oldsymbol{\mathcal{S}}}\ _0$	$\frac{\ \hat{\mathcal{L}} - \mathcal{L}_0\ _F}{\ \mathcal{L}_0\ _F}$	$\left \begin{array}{c} \ \hat{\mathcal{S}} - \mathcal{S}_0 \ \ \mathcal{S}_0 \ _{ extsf{h}} \end{array} ight $	
10	101,952	4.8e-7	1.8e-9		-	100 1	0 2	2e5	10	200,056	7.7e-7	4.1e-	-9
20	815,804	4.9e-7	9.3e-10		-	200 2	20 1	6e5	20	1,601,008	1.2e-6	3.1e-	-9
30	2,761,566	1.3e-6	1.5e-9			300 3	30 5	4e5	30	5,406,449	2.0e-6	3.5e-	-9
					0.5 0.4 0.3 0.2 0.1								
0.		0.3 Ink _t /n	0.4	0.5			0.	1	0.2 rank).4 C).5	
a) $n_1 = n_2 = 100, n_3 = 50$				(b) $n_1 = n_2 = 200, n_3 = 50$									

(a) $n_1 = n_2 = 100, n_3 = 50$ (b) $n_1 = n_2 =$ Figure: Correct recovery for varying rank and sparsity. Fraction of correct recoveries across 10 trials, as a function of rank_t(\mathcal{L}_0) (x-axis) and sparsity of \mathcal{S}_0 (y-axis).

Experiment: TRPCA for Image Recovery

Figure: Comparison on the PSNR values for image denoising on 50 images.