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Robust PCA and Tensor RPCA

Robust PCA by convex optimization
min
L,S
‖L‖∗ + λ‖S‖1, s.t. X = L + S.

(Candès, et al. Robust principal component
analysis? JACM, 2011).

Matrix of corrupted observations Underlying low-rank matrix Sparse error tensor 

Tensor RPCA: given X ∈ Rn1×n2×n3, how to
recover the underlying low-rank tensor L0 and
sparse tensor S0 perfectly?

min
L,S
‖L‖∗ + λ‖S‖1, s.t. X = L + S. (1)
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Tensor of corrupted observations Underlying low-rank tensor Sparse error tensor 

Notations and Preliminaries

IFor A ∈ Rn1×n2×n3, denote A(i) as the i-th frontal slice of A.
IĀ = fft(A, [],3) is obtained by discrete Fourier transformation of A along the 3-rd dimension.

IBlock circulant matrix bcirc(A) =


A(1) A(n3) · · ·A(2)

A(2) A(1) · · ·A(3)

... ... . . . ...
A(n3) A(n3−1) · · ·A(1)

 ∈ Rn1n3×n2n3.

I Ā = bdiag(Ā) =


Ā(1)

Ā(2)

. . .
Ā(n3)

, unfold(A) =


A(1)

A(2)

...
A(n3)

 , fold(unfold(A)) = A.

IKey property: block circulant matrix can be block diagonalized in the Fourier domain, i.e.,
(F n3 ⊗ In1) · bcirc(A) · (F−1

n3
⊗ In2) = Ā,

where F n3 ∈ Rn3×n3 is Discrete Fourier Transform (DFT) matrix with property
F ∗n3

F n3 = F n3F
∗
n3
= n3I .

Tensor-Tensor Product and Tensor Singular Value Decomposition [1]

IT-product: For A ∈ Rn1×n2×n3, B ∈ Rn2×l×n3, A ∗B = fold(bcirc(A) · unfold(B)) ∈ Rn1×l×n3.
C = A ∗B is equivalent to C̄ = ĀB̄.

IConjugate transpose A∗: , obtained by conjugate transposing each frontal slice of A.
I Identity tensor I ∈ Rn×n×n3: the first frontal slice is an identity matrix, and others are zeros.
IOrthogonal tensor: Q ∈ Rn×n×n3 is orthogonal if Q∗ ∗Q = Q ∗Q∗ = I.
IF-diagonal Tensor: all frontal slices are diagonal matrices.
ITensor SVD (T-SVD): Let A ∈ Rn1×n2×n3. Then it can be factored as

A = U ∗ S ∗ V∗,
where U ∈ Rn1×n1×n3, V ∈ Rn2×n2×n3 are orthogonal, and S ∈ Rn1×n2×n3 is a f-diagonal tensor.

Figure: Illustration of the t-SVD of an n1 × n2 × n3 tensor.

[1] Kilmer M E, Martin C D. Factorization strategies for third-order tensors. Linear Algebra and
its Applications, 2011, 435(3): 641-658.

Tensor Nuclear Norm

Tensor tubal rank: the number of nonzero singular tubes of S in t-SVD.

denoted as rankt(A) = #{i : S(i , i , :) 6= 0} = max
i

rank(Ā(i)
).

Tensor average rank: ranka(A) = 1
n3

rank(bcirc(A)) = 1
n3

rank(Ā).
Note that ranka(A) ≤ rankt(A).
Tensor nuclear norm: ‖A‖∗ = 1

n3
‖bcirc(A)‖∗ = 1

n3
‖Ā‖∗.

Tensor spectral norm: ‖A‖ = ‖bcirc(A)‖ = ‖Ā‖.
Theorem: On the set {A ∈ Rn1×n2×n3|‖A‖ ≤ 1}, the convex envelop of the tensor
average rank ranka(A) is the tensor nuclear norm ‖A‖∗.

Main Result: Exact Recovery Guarantee

IAssume that X = L0 + S0, where L0 has low tubal rank and S is sparse. How to
perfectly recover both L0 and S0 from X?

ITensor Incoherence Conditions. For L0 ∈ Rn1×n2×n3, assume that rankt(L0) = r and
it has the skinny t-SVD L0 = U ∗ S ∗ V∗, where U ∈ Rn1×r×n3 and V ∈ Rn2×r×n3 satisfy
U∗ ∗ U = I and V∗ ∗ V = I, and S ∈ Rr×r×n3 is f-diagonal. Then L0 is said to satisfy
the tensor incoherence conditions with parameter µ if

max
i=1,··· ,n1

‖U(i , :, :)‖F ≤
√

µr
n1n3

, (2)

max
j=1,··· ,n2

‖V(j , :, :)‖F ≤
√

µr
n2n3

, (3)

‖U ∗ V∗‖∞ ≤
√

µr
n1n2n2

3
. (4)

Define n(1) = max(n1,n2) and n(2) = min(n1,n2). Then n3 ≤ µ ≤ n(1)n3

r .
ITheorem: Suppose L0 ∈ Rn×n×n3 obeys (2)-(4). Fix any n × n × n3 tensor M of

signs. Suppose that the support set Ω of S0 is uniformly distributed among all sets of
cardinality m, and that sgn

(
[S0]ijk

)
= [M]ijk for all (i , j , k) ∈ Ω. Then, there exist

universal constants c1, c2 > 0 such that with probability at least 1− c1n−c2 (over the
choice of support of S0), {L0,S0} is the unique minimizer to (1) with λ = 1/

√
nn3,

provided that
rankt(L0) ≤

ρrnn3

µ(log(nn3))2
and m ≤ ρsn2n3,

where ρr and ρs are positive constants. If L0 ∈ Rn1×n2×n3 has rectangular frontal
slices, TRPCA with λ = 1/√n(1)n3 succeeds with probability at least 1− c1n−c2

(1) ,
provided that rankt(L0) ≤

ρrn(2)n3

µ(log(n(1)n3))2
and m ≤ ρsn1n2n3.

IRemarks: (1) The perfect recovery is guaranteed with high probability for
rankt(L0) on the order of nn3/(µ(log nn3)

2) and ‖S0‖0 on the order of n2n3.
(2) When n3 = 1, TRPCA and its recovery guarantee reduce to RPCA.

Optimization by ADMM

IThe main per-iteration cost lies in the update of Lk+1, which requires computing FFT
and n3 SVDs of n1× n2 matrices.

IThe per-iteration complexity of ADMM for TRPCA is O
(

n1n2n3 log(n3) + n(1)n2
(2)n3

)
.

argmin
L

λ‖L‖∗ +
1
2
‖L−A‖2

F = argmin
L

λ

n3
‖L̄‖∗ +

1
2n3
‖L̄− Ā‖2

F

⇔argmin
{L̄(i)}n3

i=1

λ‖L̄(i)‖∗ +
1
2
‖L̄(i)− Ā(i)‖2

F

Experiment: Low-rank Tensor Recovery on Random Data

ISet λ = 1/√n(1)n3 in all experiments.
IGenerate L0 = P ∗Q, P ∈ Rn×r×n, Q ∈ Rr×n×n ∼ N (0,1/n).
IThe support set Ω (with size m) of S0 is chosen uniformly at random.

Table: Correct recovery for random problems of varying size.
r = rankt(L0) = 0.1n, m = ‖S0‖0 = 0.1n3

n r m rankt(L̂) ‖Ŝ‖0
‖L̂−L0‖F
‖L0‖F

‖Ŝ−S0‖F
‖S0‖F

100 10 1e5 10 101,952 4.8e−7 1.8e−9
200 20 8e5 20 815,804 4.9e−7 9.3e−10
300 30 27e5 30 2,761,566 1.3e−6 1.5e−9

r = rankt(L0) = 0.1n, m = ‖S0‖0 = 0.2n3

n r m rankt(L̂) ‖Ŝ‖0
‖L̂−L0‖F
‖L0‖F

‖Ŝ−S0‖F
‖S0‖F

100 10 2e5 10 200,056 7.7e−7 4.1e−9
200 20 16e5 20 1,601,008 1.2e−6 3.1e−9
300 30 54e5 30 5,406,449 2.0e−6 3.5e−9
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(a) n1 = n2 = 100, n3 = 50
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(b) n1 = n2 = 200, n3 = 50
Figure: Correct recovery for varying rank and sparsity. Fraction of correct recoveries across
10 trials, as a function of rankt(L0) (x-axis) and sparsity of S0 (y-axis).

Experiment: TRPCA for Image Recovery

Figure: From left to right: original image; noisy image; recovered images by RPCA, SNN
(Sum of Nuclear Norms) and TRPCA, respectively.
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Figure: Comparison on the PSNR values for image denoising on 50 images.


