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Abstract—In this paper, we study Discriminative Analysis for
symmetric positive definite (SPD) matrices on Lie Groups, namely
transforming a Lie Group (LG) into a dimension-reduced one by
optimizing data separability. Particularly, we take the space of
SPD matrices, e.g. covariance matrices, as a concrete example of
Lie Groups, which has proved to be a powerful tool for high-order
image feature representation. The discriminative transformation
of a Lie Group is achieved by optimizing the within-class
compactness as well as the between-class separability based on
the popular graph embedding framework [1]. A new kernel based
on the geodesic distance between two samples in the dimension-
reduced Lie group is then defined, and fed into classical kernel-
based classifiers, e.g. Support Vector Machine, for various visual
classification tasks. Extensive experiments on five public datasets,
i.e., Scene-15, Caltech101, UIUC-Sport, MIT-Indoor and VOC07,
well demonstrate the effectiveness of discriminative analysis for
SPD matrices on Lie groups, and state-of-the-art performances
are reported.

Index Terms—Discriminative analysis, Lie group, graph em-
bedding, visual classification.

I. INTRODUCTION

The past few decades have witnessed significant growth in
the utilization of structured data in various computer vision
and machine learning applications [2], [3], [4], where richer
representations of data, such as matrices, tensors or graphs, are
utilized instead of typical vector spaces. One of the interesting
data structures that have gained much attention recently is
Symmetric Positive Definite (SPD) matrices, the space of
which is known to form a Lie group [5], [6], [7]. A Lie
group is a group with the structure of a differentiable manifold
such that the group operations, multiplication and inverse, are
differentiable maps. The SPD matrices provide a powerful
platform for analyzing visual signals, such as images and
videos.

Due to their great importances in computer vision literature,
SPD matrices have been much researched. A popular kind of
SPD image descriptors, namely region covariance [8], is a
powerful tool for encoding second-order image features, and
has been applied to object detection and texture classification.
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To address the semantic segmentation problem, Carreira et al.
[9] took advantage of the manifold structure of SPD matrices
to analyze a certain kind of second-order statistics of image
features.

The SPD matrices are mapped to a high dimension Hilbert
space by kernels, and applied to pedestrian detection, image
segmentation, and object categorization [6]. In order to employ
the geometric structure of SPD matrices, Li et al. [7] also
proposed a kernel based method for sparse representation and
dictionary learning on Lie groups, and applied it to scene
categorization, texture classification and face recognition.

Although SPD matrices have been proved to be a powerful
tool for visual feature representation, successful applications
still suffer from two limitations: 1) without considering the
local structure of data on Lie groups, the discrimination
may be adversely affected by some outliers and multi-modal
classes may adversely affect the discrimination; 2) due to
the redundancy of the manifold-valued data, its discriminative
power may also be limited. To overcome the above limitation,
a possible way is to perform discriminative analysis to reduce
the dimension of the SPD matrices as in the Euclidean
subspace.

To address these issues, we propose a novel method in this
work, called discriminative analysis for SPD matrices on Lie
groups, namely transforming a Lie group to a dimension-
reduced one by optimizing data separability. In particular,
we learn a discriminative transformation between two Lie
groups based on the popular graph embedding framework [1].
First, two graphs are defined, i.e. an intrinsic graph and a
penalty graph. The intrinsic graph characterizes the within-
class compactness and connects points of the same class, while
the penalty graph characterizes the between-class separability
and connects the marginal points of different classes. Then
a discriminative transformation is learned by enhancing the
within-class compactness as well as maximizing the between-
class separability. As a by-product, our proposed algorithm
also reduces the dimensionality of SPD matrices, which will
reduce the cost of model training and test in pattern analysis.
Finally, a new kernel based on the geodesic distance between
two points in the dimension-reduced Lie group is then defined
and fed into classical kernel-based classifiers, e.g. Support
Vector Machine (SVM), for various visual classification tasks.
Taking the UIUC-Sport event classification as an example, Fig.
1 illustrates the framework of the discriminative analysis for
SPD matrices on Lie groups.

The remainder of this paper is organized as follows. In
Section II, we will review some related work. Section III in-
troduces the background knowledge about Lie group. Section
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Fig. 1. An illustration of the discriminative analysis for SPD matrices on Lie groups. Symmetric positive definite (SPD) matrices are embedded as points on
the Lie group, and the geometric distance between two points can be computed. Our proposed algorithm transforms the data points from a Lie Group G into
a dimension-reduced one H by optimizing data separability. Specifically, the connected points with the same label stay as close together as possible, while
connected points sharing different labels stay as far away as possible. Example images are from the UIUC-Sport database [10].

IV describes the discriminative analysis on Lie groups and
also presents how to solve the induced optimization problem.
In Section V, we apply our approach to visual classification,
followed by experimental results and algorithm analysis in
Section VI. The main findings and possible future research
are summarized in Section VII.

II. RELATED WORK

We recall some standard similarity meatures for SPD ma-
trices. The distance or similarity measure over the space of
SPD matrices is crucial for discriminative analysis. A simple
method is to represent n × n SPD matrices as vectors in
R

d×(d+1)
2 , and then the distance in the Euclidean space can

be used [9]. However, the space of SPD matrices does not
conform with the Euclidean geometry, but forms a Lie group
which is a differentiable manifold. Vectorizing the covariances
into the Euclidean space ignores the manifold structure which
leads to poor performance [11].

A better choice is to take the curvature of the Riemannian
manifold into account and use the corresponding geodesic
length along the manifold surface as the distance. Several
different similarity measures or metrics of SPD matrices
have been proposed. For Xi, Xj in S+

n , the Affine Invari-
ant Riemannian Metric (AIRM) [12] is defined: DAIRM =
||log(X

−1/2
i XjX

−1/2
i )||F . This metric enjoys several useful

theoretical properties, but its computational complexity for
lager matrices causes significant slowdowns. The Jensen-
Bregman LogDet Divergence (JBLD) [13] is defined as
DJBLD = log | Xi+Xj

2 | −1
2 log | XiXj |, where | · | denotes

the determinant. Although the computational speed of JBLD
metric is fast, the structure of the manifold space may not
be preserved well. Wang et al. [14] proposed the J-divergence
as the distance measure for SPD matrices, DJdiv(Xi, Xj) =√

1
2 tr(X−1i Xj +X−1j Xi)− n), where tr(·) is the matrix trace

operator, and n is the size of square matrix Xi and Xj .
And the symmetrized KL-Divergence Metric (KLDM) [2] is
defined, DKLDM(Xi, Xj) = 1

2 tr(X−1i Xj +X−1j Xi− 2I). The
J-divergence [14] and KLDM metric [2] require the inversion
of the SPD matrices, which can be slow, and may lead to poor
accuracy with overestimating the Riemannian metric.

The Log-Euclidean Riemannian Metric (LERM) is defined
as follows,

DLE(Xi, Xj) = ||log(Xi)− log(Xj)||F , (1)

where Xi, Xj ∈ S+n , S+n denotes the set of SPD matrices with
size n×n, log(·) is the principal matrix logarithm, and || · ||F
denotes the Frobenius norm of a matrix. The Log-Euclidean
mapping log(X) maps the SPD matrix to a flat Riemannian
space and thus the Euclidean distances can be used in LERM,
which are widely used due to their easy computation and
several important properties, e.g. invariance to inversion and
similarity transforms. For the pedestrian detection problem,
Tuzel et al. [15] utilized SPD matrices as object descriptors
and implemented the boosting method on the Riemannian
manifold. Vemulapalli et al. [16] performed classification by
mapping SPD matrices from Riemannian manifolds to Eu-
clidean spaces using the kernel learning approach. We also
used the Log-Euclidean Riemannian Metric in this work.

The conventional discriminative analysis methods, e.g. Lin-
ear Discriminant Analysis (LDA) [17] and Marginal Fisher
analysis (MFA) [1], do not take into account the Lie group
geometric structure of the data, which may result in the loss of
important discriminative information. Moreover, it is difficult
to carry out the discriminative analysis on Lie groups as the
conventional vector-based discriminative analysis methods.

There have also been considerable research efforts [18]
devoted to discriminative analysis for Riemannian manifolds
such as the Grassmann manifold. Hamm et al. [19] performed
the discriminant analysis by using kernel linear discriminant
analysis (LDA) with the Grassmann kernels, but only focused
on manifold kernel LDA to classification problems. Harandi
et al. [20] also proposed a graph embedding discriminative
analysis on the Grassmann manifold, which maps the manifold
space into reproduced kernel Hilbert spaces.

Recently, Li et al. [21] embedded the space of Gaussian into
the space of SPD matrices, which are analyzed from the Lie
group manifold point of view. In order to get a discriminative
distance, they attempted to find a linear transformation in the
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logarithm domain, which is defined as

D(Xi, Xj) = tr((log(Xi)− log(Xj))
TM(log(Xi)− log(Xj)))

= ||A(log(Xi)− log(Xj))||F
(2)

where Xi, Xj and M are three SPD matrices with size n×n,
and M = ATA. Wang et al. [22] proposed a discriminative
learning approach by modeling the image set with SPD matri-
ces, and also explored the Log-Euclidean distance metric for
SPD matrices. With this metric function, they can map the SPD
matrix from the Riemannian manifold to a Euclidean space,
and then some learning methods (such as linear discriminant
analysis and partial least squares) with respect to the vector
space can be exploited in linear/kernel formulation.

From the perspective of distance metric, our proposed
method is also based on the same Log-Euclidean Riemannian
Metric (LERM) with [21], and can also be seen as a kind
of metric learning method on the Lie group manifold space.
However, these manifold discriminative analysis methods,
which are based on a metric learning view of the problem, 1)
do not tackle subspace learning between the manifold spaces,
but transform the manifold space to the vector space; 2) and
they also suffer from the redundancy of the manifold-valued
data, namely not transforming a Lie group to a dimension-
reduced one.

III. BACKGROUND KNOWLEDGE OF LIE GROUP

A. Lie Groups and Lie Algebra

A Lie group G is a smooth manifold with a group structure,
in which the group operations of multiplication and inversion
are smooth maps [23]. In particular, the group is characterized
by a unique identity element I ∈ G and two group operations

multiplication g1g2 : G×G→ G, inversion g−1 : G→ G,
(3)

which are smooth mappings.
The tangent space of the Lie group G to its identity element

I forms a Lie algebra g. We can map between the Lie group
and its tangent space from the identity element I using the
exp and log maps,

X̄ = log(X), X = exp(X̄), (4)

where X ∈ G and X̄ ∈ g are elements of Lie group and Lie
algebra, respectively. In this paper, we only focus on matrix
Lie groups. The exponential and logarithm maps of a matrix
are given by

log(X) =

∞∑
i=1

(−1)i−1

i
(X − I)i, exp(X̄) =

∞∑
i=0

1

i!
X̄i.

(5)
Let G and H be Lie groups with their corresponding Lie

algebras g and h. A transformation φ : G → H from
a Lie group G to H is called a smooth map if it is a
group homomorphism [24]. That is to say, the Lie group
homomorphism is a map between Lie groups φ : G → H,
which is both a group homomorphism and a smooth map. φ∗
is a map between the corresponding Lie algebras g and h:

𝑋𝑖 = exp 𝑋𝑖            𝑋𝑖 = log(𝑋𝑖)             

∅: 𝑌𝑖 = exp(𝑃𝑇 log 𝑋𝑖 𝑃) 
𝑌𝑖  𝑋𝑖  

G                                                                                              Η 

ग़                                                                                            𝔥 
𝑌𝑖  𝑋𝑖  ∅∗: 𝑌𝑖 = 𝑃𝑇 𝑋𝑖 𝑃 

𝑌𝑖 = exp 𝑌𝑖           𝑌𝑖  = log(𝑌𝑖)             

Fig. 2. An illustration of the transformation between Lie groups. The tangent
spaces of Lie groups G and H to the identity element I form Lie algebras g
and h, respectively. The Lie group and the corresponding Lie algebra space
can be mapped using the exp and log maps. The map between Lie algebras
(g→ h) is denoted by φ∗: Ȳi = PT X̄iP . Then we can get the transformation
from one Lie group G to another Lie group H, φ: Yi = exp(PT log(Xi)P ).

φ∗ : g→ h. The maps φ and φ∗ are related by the exponential
maps. For any X̄ ∈ g, we have

φ(exp(X̄)) = exp(φ∗(X̄)). (6)

B. S+n as a Lie Group

S+n is a Lie group with the identity element being the
identity matrix I and its inverse operation follows the regular
matrix inversion. In the Log-Euclidean framework, the loga-
rithmic multiplication � : S+n × S+n 7→ S+n and the inversion
are defined as [5]:

Xi �Xj : = exp(log(Xi) + log(Xj)),

X−1i : = exp(− log(Xi)).
(7)

It can be seen that the multiplication operation and inverse op-
eration are smooth mappings in the Log-Euclidean framework.
Therefore, the space of S+n forms a Lie group.

The distance of two points on a Lie group can be measured
by the shortest length of the curve connecting them. The min-
imum length curve between two points is called the geodesic.
With the above logarithm map and the group operation, the
geodesic distance [23], [5] between two elements on a Lie
group can be computed by

DLE(Xi, Xj) = || log(Xi)− log(Xj)||F , (8)

where Xi, Xj ∈ S+n and || · ||F denotes the Frobenius norm
of a matrix.

IV. DISCRIMINATIVE ANALYSIS FOR SPD MATRICES

In this section, we introduce discriminative analysis for
SPD matrices on Lie groups, namely transforming a Lie
group G into a dimension-reduced one H by optimizing data
separability. Under the popular graph embedding framework
[1], we learn the discriminative transformation between Lie
groups, by introducing intrinsic and penalty graphs to re-
spectively characterize within-class compactness and between-
class separability.

A. Transformation between Lie Groups

Let Xi ∈ S+m and Yi ∈ S+n (usually n < m) be two
points on two Lie groups G and H, respectively. According
to the Lie group homomorphism theory [24], we introduce
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a transformation from a Lie group G to another Lie group
H, i.e., φ : Xi → Yi. The tangent spaces of Lie groups
G and H to the identity element I form Lie algebras g
and h, respectively. The Lie group and the corresponding Lie
algebra space can be mapped using the exp and log map, i.e.,
G = exp(g) and g = log(G).

In the Lie algebraical space, X̄i ∈ h, Ȳi ∈ g are respectively
two points corresponding to Xi ∈ G and Yi ∈ H by the exp
and log maps, i.e.

X̄i = log(Xi), Xi = exp(X̄i),

Ȳi = log(Yi), Yi = exp(Ȳi).
(9)

It can be seen from (9) that X̄i is symmetric and with the same
size as Xi. Ȳi is also symmetric and with the same size as Yi.
Instead of defining the transformation φ : Xi → Yi between
the Lie groups G and H directly, we define the transformation
φ∗ : X̄i → Ȳi between their corresponding Lie algebras h and
g as follows

φ∗ : Ȳi = PT X̄iP, (10)

where P ∈ Rm×n. Multiplying PT and P on both sides of
X̄i preserves the symmetric structure of the data.

Based on the mapping (9) between the Lie groups and their
corresponding Lie algebras using the exp and log map, the
corresponding transformation from the Lie group G to H is:

φ : Yi = exp(Ȳi)

= exp(PT X̄iP )

= exp(PT log(Xi)P ).

(11)

According to the above Lie group transformation φ, all such
points Xi on the Lie group G can be mapped to other points
Yi in the set H. It can be proved that H also forms a Lie
group by the definition directly. Actually, the multiplication
and inversion operations of the elements (Yi, Yj ∈ H) are:

Yi � Yj : = exp(log(Yi) + log(Yj))

= exp(PT log(Xi)P + PT log(Xj)P )

= exp(PT (log(Xi) + log(Xj))P ),

Y −1i : = exp(− log(Yi))

= exp(−PT log(Xi)P ).

(12)

Since Xi and Xj are SPD matrices, it is easy to be verified that
both Yi � Yj and Y −1i are SPD matrices. By the definition of
the Lie group, all the projected points Yi form a Lie group H.
Fig. 2 illustrates how to construct the transformation between
Lie groups.

B. Discriminative Learning for SPD matrices on Lie Groups

In this subsection, we present the discriminative analysis
for SPD matrices on Lie groups to improve the discriminative
power of the data. Specifically, we aim to learn a discrimina-
tive transformation from a Lie group into a dimension-reduced
one by optimizing data separability. The discriminative trans-
formation of the Lie Group is achieved by enhancing the
within-class compactness as well as maximizing the between-
class separability based on the popular graph embedding
framework in [1].

Based on the Marginal Fisher Analysis (MFA) method [1],
we design the intrinsic graph and the penalty graph for our
proposed algorithm. The intrinsic graph Ww characterizes the
within-class compactness and connects each data point with its
neighboring points of the same class, while the penalty graph
W b characterizes the between-class separability and connects
the marginal point pairs of different classes.

Suppose we are given N labeled points {Xi, li}Ni=1 from the
underlying Lie group G, where Xi ∈ S+n and li ∈ {1, 2, .., C}
with C denoting the number of classes. The local space
structure of the Lie group can be modeled by building the
intrinsic graph Ww and the penalty graph W b. Based on the
within-class compactness and the between-class separability,
Ww and W b are respectively defined by:

Ww
ij =

{
1, if Xi ∈ N+

k1
(Xj) or Xj ∈ N+

k1
(Xi)

0, otherwise,

W b
ij =

{
1, if (Xi, Xj) ∈ Pk2(ci) or (Xi, Xj) ∈ Pk2(cj)

0, otherwise.
(13)

Here, N+
k1

(Xi) indicates the index set of the k1 nearest
neighbors of the sample Xi in the same class, πc denotes the
index set of samples belonging to the cth class, Pk2(c) is the
set of the k2 nearest data pairs among the set {(Xi, Xj), Xi ∈
πc, Xj /∈ πc}, and the nearest neighbors of the samples are
computed by the distance metric in Eqn. (8).

To further improve the discriminative power on Lie groups
and preserve the geometrical structure of the data, we perform
discriminative analysis by simultaneously characterizing the
within-class compactness and the between-class separability.
In other words, the connected points of Ww stay as close
together as possible, while connected points of W b stay as
distant as possible. Then we can describe the above analysis
by optimizing the following two objective functions:

min
P

f1 =
∑
i,j

DLE(Yi, Yj)
2Ww

ij

=
∑
i,j

|| log(Yi)− log(Yj)||2FWw
ij

(14)

max
P

f2 =
∑
i,j

DLE(Yi, Yj)
2W b

ij

=
∑
i,j

|| log(Yi)− log(Yj)||2FW b
ij ,

(15)

where Yi = exp(PT log(Xi)P ) and log(Yi) = PT log(Xi)P .
Eqn. (14) punishes the neighbours in the same class if they are
mapped far away on the new Lie group H, while Eqn. (15)
punishes the points of different classes if they are mapped
close together on the new Lie group H. By converting both
problems into minimization, the overall optimization problem
is 1

P ∗ = arg min
P

(f1 − f2). (16)

The whole procedure of our proposed algorithm is outlined in
Algorithm 1.

1One may use other objective functions to learn the transformation, e.g.
min f1

f2
. For the convenience of the optimization, we simply use (16).
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Algorithm 1 Discriminative analysis for SPD matrices on Lie groups
Input: Training set {Xi, li}Ni=1 from underlying Lie group G, where

Xi ∈ S+n , and li ∈ {1, 2, ..., C}, with C denoting the number
of classes.

1. Construct intrinsic graph Ww and penalty graph W b with Eqn. (13).
2. Solve problem (16) for learning a discriminative transformation.
3. Transform all points from a Lie group G to another dimension-

reduced Lie group H by Eqn. (11).

Differentiating f1 − f2 with respect to the transformation
matrix P yields a gradient rule which will be used for
optimization:

∂(f1 − f2)

∂P
= 8

∑
i,j

(log(Xi)PP
T log(Xi)P

− log(Xi)PP
T log(Xj)P )(Ww

ij −W b
ij).
(17)

In minimizing the criterion in (16), we can calculate (17) and
update the transformation matrix P by a conjugate gradients
optimizer (like the neighbourhood components analysis (NCA)
method [25]), i.e.

Pt+1 = Pt − ε
∂(f1 − f2)

∂Pt
, (18)

where ε is the step-size in the gradient descent. Furthermore,
by restricting P to be a non-square matrix of m×n (n < m),
the data dimension is reduced after the transformation by
the discriminative analysis for SPD matrices. Furthermore,
to optimize the transformation matrix P in Eqn. (16), we
employ a conjugate gradient optimizer which is a standard
optimization method [26], and as a result, the transformation
matrix P can only obtain a local minimum in the sense of
(16), which will again be shown in the experimental parts.

We finally perform a rigorous theoretical complexity anal-
ysis of the proposed algorithm. For the per-iteration with
Eqn. (17), the computational complexity is about O(N2m2n),
where N is the number of image samples in the training
set, m and n are the size of the square matrix Xi and Yi
respectively. For mapping each SPD matrix from Lie group
manifold to the Euclidean space, the complexity of computing
log(Xi) is O(n3), where n is the size of a square matrix Xi.
Therefore, for computing similarity matrix with Eqn. (8), the
computational complexity is O(Nn3).

V. APPLICATION FOR VISUAL CLASSIFICATION

To evaluate our proposed algorithm, we apply it for visual
classification, and introduce how to extract SPD descriptors
for visual images. Recently, Carreira et al. [9] mapped SPD
local descriptors to the tangent space using the theory of Log-
Euclidean metrics, but they just constructed the feature vector
from the upper triangle of log(Xi), and then obtained the
distance by the inner product between feature vectors. Inspired
by the second-order feature pooling algorithm [9], we utilize
this SPD descriptor for the visual classification problem.

We use the second-order image feature pooling algorithm
[9] to extract the second-order feature with a spatial pyramid
scheme [27]. For an image i, the SPD descriptor of an image

region Rk can be defined as:

Xik =
1

|fRk
|

∑
o:(fo∈Rk)

fofTo (19)

where fo ∈ Rm are all descriptors of an image i, fo ∈ Rk and
|fRk
| denote the descriptors and the corresponding number in

the image region Rk, respectively.
A weighted sum of the distance between two images Ii and

Ij is:

DLE(Ii, Ij) =

√√√√ K∑
k=1

wk(DLE(Xi,k, Xj,k))2, (20)

where K is the total number of image regions,
DLE(Xi,k, Xj,k) is the distance between the respective
tth image region of Ii and Ij , and wk is the weight of the
kth region.

The above SPD image descriptors on the Lie group G can
be transformed to another Lie group H by the our proposed
algorithm. Then a kernel based on the geodesic distance
between two samples in the dimension-reduced Lie group is
defined as follows:

KLE(Ii, Ij) = exp(−γ(DLE(Ii, Ij))), (21)

where the parameter γ is directly related to scaling. It can be
easily proved, the same as in [28], that the newly defined Lie
group kernel is a valid Mercer’s kernel. The Lie group kernel
can be employed in classification methods such as Nearest
Neighbour or Support Vector Machines.

VI. EXPERIMENTS

In this section we evaluate our proposed algorithm by
comparing it with several existing state-of-the-arts. We first
introduce the experimental setups, and then report and analyze
the experimental results, after which a further discussion about
the effectiveness of the proposed algorithm is given.

A. Experimental Setups

The experiments are conducted on four commonly used
datasets: Scene15 [27], Caltech101 [29], UIUC-Sport [10],
MIT-Indoor [30] and PASCAL VOC2007 [31].

The Scene15 [27] database consists of 4,485 images with
15 categories, each category containing 200 to 400 images.
Following the same experimental setting as in [27], we take
100 images per category for training and the rest images are
used for test, and report the averaged classification accuracies
over 10 trials.

The Caltech101 [29] contains 8,677 images in total, with
102 categories (including one background category). Follow-
ing the experimental protocol stated by the designers of this
dataset, we randomly choose 15 (for the first round), 30 (for
the second round) images per category for training, and use the
rest images for test. Then we conduct the experiment with this
random split for 10 times and report the average classification
accuracy over these 10 trials for comparison.

The UIUC-Sport dataset [10] has 8 complex event classes.
Following the sample experiment setting used in [32], [33],
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TABLE V
THE MEAN AVERAGE PRECISIONS ON PASCAL VOC 2007 DATABASE.

PLEASE SEE THE TEXT FOR DETAILS ABOUT EACH METHOD.

Method mAP (in %)
IFK (SIFT) [44] 58.3
Best of VOC07 [31] 59.4
BoF+HOG [36] 59.82
FLH [38] 60.4
IFK (SIFT+Color) [44] 61.7
FLH+BOW [38] 62.8
FK+VC [35] 62.9
LG 61.83
Ours 63.37

70 images from each class are randomly sampled for training
and 60 images are sampled for test. We run the experiment
for 10 trials, and report the average classification accuracy.

The MIT-Indoor dataset [30] consists of 67 clustered indoor
scene categories, and we adopt the fixed training/testing splits
as in [30].

We also use PASCAL VOC2007 dataset [31] to analyze the
performances of the proposed method from various aspects.
The dataset contains objects of 20 categories and it poses a
challenging task of object recognition due to significant varia-
tions in terms of appearances and poses even with occlusions.
There are 5,011 training images and 4,952 test images. The
performance is evaluated by the standard PASCAL protocol
which computes average precision (AP) based on the preci-
sion/recall curve; we report the mean Average Precision (mAP)
across the 20 categories.

All experiments are conducted based on the following
experimental setups:
• To construct the SPD image features (with no dictionary

learning), we extract the 128-dimensional SIFT descrip-
tors, as well as the additional 17-dimensional features
including RGB color values, location, gradient, and Har-
ris features, via the VLFeat library [45]. Thus the size of
the SPD descriptor Xi ∈ S+m is 145× 145, i.e. m = 145.

• To construct the SPD descriptors, the image is divided
into 1×1, 2×2 and 4×4 grids, so that totally 21 spatial
pooling regions are obtained, assigning the same weight
w at the same layer.

• We empirically set the parameters k1 and k2 of the
intrinsic graph Ww and the penalty graph Wb in all
visual classification experiments, as described in [1].
Specifically, we sample five values {2, 3, 5, 7, 9} of k1
and choose the value with the best performance. We
similarly choose the best k2 in the set {20, 40, 60, 80}.

• A one-versus-all scheme is used to tackle the multi-class
problem, and the SVM training and testing are performed
using the libsvm software package [46]. The parameter
γ of the LG kernel is set to 0.001 in our experiment.

• The dimension n of dimension-reduced data Yi ∈ S+m is
selected in the set n={145, 135, 125, 115, 105}. In our
experiment, the best results are reported with n = 125.

• In order to evaluate the effectiveness of our proposed
algorithm, we design a Lie group (LG) kernel method
over the original data space without using the proposed
algorithm for preprocessing, and we denote this method

as LG (without discriminative analysis). And the dimen-
sion m of the original SPD data Xi is 145.

• The SPD matrices in the matrix log operation should meet
some conditions. Following the same setting defined in
[9], we also added a small constant on their diagonal
(0.001 in all experiments) for numerical stability.

B. Performance Comparison

Table I shows the classification accuracy on the Scene15
database. It can be seen that the discriminative analysis for
SPD matrices on Lie groups significantly outperforms the
others including the Log-Euclidean kernel method with sparse
representation and dictionary learning of SPD matrices [7],
Spatial Pyramid Matching (SPM) [27], SPM on the semantic
manifold [34], mid-level visual concepts [35], Discriminative
part detectors learning method [37], etc. The LG and our
proposed methods are both better than the other methods, and
the discriminative analysis for SPD matrices on Lie groups
performs the best when the dimension n of the transformed
data Sn+ is 125. Furthermore, the proposed method improves
the performance by 1.86% over the Lie group kernel method,
which does not perform transformation between Lie groups.

The experimental results on the Caltech101 database are
shown in Table II. We compare the proposed method with
the exiting algorithms such as Low-rank sparse coding [32],
Sparse embedding [41], Kernel sparse representation [42], etc.
The results indicate that our algorithm is significantly better
than the other methods. The classification accuracy of the
proposed method is 1.6% and 2.28% higher than the result
of the LG method for 15 and 30 training images, respectively.

Table III and IV show the comparison results on the UIUC-
Sport and MIT-Indoor datasets, respectively. Our proposed
method effectively works compared to the other methods
(e.g. Kernel sparse representation [42], Discriminative part
detectors learning method [37] and the LG method). The clas-
sification accuracies of UIUC-Sport and MIT-Indoor datasets
are substantially improved from 88.4% and 52.3% (the best
reported results [35]) to 90.90 and 55.57, respectively.

Finally, we compare in Table V the result of our proposed
algorithm with some results in the literature [44], [31], [36],
[38], [35] on the PASCAL VOC 2007 database. The best
method during the PASCAL VOC 2007 competition (by
INRIA) [31] reported 59.4% mAP with multiple channels
and costly non-linear SVMs. Fernando et al. [38] obtained an
mAP of 60.4% with the method of Frequent Local Histograms
(FLH) alone, and got an mAP of 62.8% after combining FLH
with bag-of-visual-words (FLH+BOW) of SIFT-128 and 5K
visual word vocabulary. In [44], Improved Fisher Kernel (IFK)
obtained two results 58.3% and 61.7% with SIFT features
only and with SIFT and color information, respectively. T.
Kobayashi [36] reported the 59.83 % mAP by combining Bag-
of-Feature with Histogram of Oriented Gradients (BoF+HOG).
The method combining the improved fisher kernel with our
visual concepts (FK+VC) [35] got an mAP of 62.9%. The
proposed method is comparable to some exiting methods, and
thus we can say that the method effectively works for the
problem of multi-label image classification.



1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCSVT.2015.2392472, IEEE Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY , VOL. XX, NO. X, MAY 2014 7

TABLE I
PERFORMANCE COMPARISON ON THE SCENE15 DATABASE.

Method Accuracy (%)
Li.P et al. [7] 80.92±0.44
Lazebnik et al. [27] 81.4±0.5
Kwitt et al. [34] 82.3
Li et al. [35] 85.4
Kobayashi et al. [36] 85.63±0.67
Sun et al. [37] 86.0±0.8
Fernando et al. [38] 86.2±0.4
Zheng et al. [39] 86.3
LG 88.02±0.47
Ours 89.88±0.46

TABLE II
PERFORMANCE COMPARISON ON THE CALTECH101 DATABASE.

Method Accuracy (%)
15 tr. 30 tr.

McCann et al. [40] 66.1±1.1 71.9±0.6
Zhang et al. [32] - 75.02±0.74
Sun et al. [37] - 78.8±0.5
Nguyen et al. [41] 69.5 77.3
Goh et al. [42] 71.1±1.3 78.9±1.1
Duchenne et al. [43] 75.3±0.7 80.3±1.2
Feng et al. [33] 70.3 82.6
LG 75.83±0.7 81.41±0.9
Ours 77.42±0.9 83.69±0.8

TABLE III
PERFORMANCE COMPARISON ON THE UIUC-SPORT DATABASE.

Method Accuracy (%)
LiJia et al. [10] 76.3
Kwitt et al. [34] 83.0
Sun et al. [37] 86.4±0.88
Zheng et al. [39] 87.2
Zhang et al. [32] 88.17±0.85
Li et al. [35] 88.4
LG 89.0±1.2
Ours 90.91±0.9

TABLE IV
PERFORMANCE COMPARISON ON THE MIT-INDOOR DATABASE.

Method Accuracy (%)
Quattoni et al. [30] 26
LiJia et al. [10] 37.6
Kwitt et al. [34] 44.0
Zheng et al. [39] 47.2
Sun et al. [37] 51.4
Li et al. [35] 52.3
LG 53.46
Ours 55.58

C. Algorithm Analysis

Our proposed algorithm has a fast convergence of the
iterations when learning a discriminative transformation in
Eqn. (16). In Fig. 3, we show the relationship between the
objective function values f1− f2 and the number of iterations
on the Scene15 database, namely how the objective function
f1 − f2 changes with respect to the number of iterations on
the Scene15 database.

We then analyze the sensitivity of our ptoposed algorithm to
the different dimension n of the transformed SPD descriptors.
As shown in Figure 4, different n values have different impact
on the classification rates. Due to the redundancy of the
manifold-valued data, the discriminative power is limited in
the original space of the SPD data. It is noticed that the
classification accuracy of the 125-dimensional data is better
than the original space of the SPD data (n = 145), but the
accuracy rate is reduced when the dimension n of the SPD
data is 105. If the dimension of the SPD data is very low, the
discriminative information may be not sufficient. Therefore,
the discriminative power of the data is better only if the
dimension of the SPD data is appropriate.

Here we also analyze the effectiveness of the proposed
algorithm with respect to the within-class compactness and
the between-class separability on the Scene15 database. We
randomly select 10 images per category with scene labels, then
order them according to their labels, and test our algorithm on
this subset. The derived affinity matrices by the LG method
and our proposed method are illustrated in Fig. 5. We can see
that the discriminative analysis for SPD matrices on Lie groups
obtains an affinity matrix which is closer to block diagonal by
a discriminative transformation.

Fig. 6 presents the relationship between the discriminative
power and the parameter γ on the Scene15 database. The
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Fig. 6. Performance on the Scene15 database for various parameter γ values
of the Lie group kernel.

recognition rate is robust as long as the value of the parameter
γ falls in the range of approximately from 0.0005 to 0.1,
however the Lie group kernel with a smaller value of the
parameter γ from 0.1 to 1 can significantly deteriorate the
recognition rates.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we proposed discriminative analysis for SPD
matrices on Lie groups by transforming a Lie group into a
dimension-reduced one. Within the graph embedding frame-
work, a discriminative transformation is learned by optimizing
the data separability. This will reduce the cost of model
training and testing in pattern analysis. Experimental results
show that the proposed method achieve superior performances
by comparing with state-of-the-art methods.

The main shortcoming of the proposed approach is costly
computation time. Take the UIUC-Sport dataset as an example,
the training stage takes around 8hrs, while the testing time is
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about 1hr on an Intel Core 2 Quad processor with 2.83GHz
CPU and 8.00GB RAM. Therefore, we shall study how to
speed up our proposed manifold learning algorithm for SPD
matrices in future.
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APPENDIX

Proof of Eqn. (14) and (15)

By using the transformation function log(Yi) = PT log(Xi)P , we have

f1 =
∑
i,j

|| log(Yi)− log(Yj)||2FW
w
ij

=
∑
i,j

||PT log(Xi)P − PT log(Xj)P ||2FW
w
ij

=
∑
i,j

tr((PT log(Xi)P − PT log(Xj)P )T

(PT log(Xi)P − PT log(Xj)P ))Ww
ij

=
∑
i,j

tr((PT log(Xi)P − PT log(Xj)P )

(PT log(Xi)P − PT log(Xj)P ))Ww
ij

=
∑
i,j

tr(PT log(Xi)PP
T log(Xi)P−

PT log(Xi)PP
T log(Xj)P−

PT log(Xj)PPT log(Xi)P+

PT log(Xj)PPT log(Xj)P )Ww
ij

=2
∑
i,j

tr(PT log(Xi)PP
T log(Xi)P

− PT log(Xi)PP
T log(Xj)P )Ww

ij .

Similarly,

f2 =
∑
i,j

|| log(Yi)− log(Yj)||2FW
b
ij

=2
∑
i,j

tr(PT log(Xi)PP
T log(Xi)P

− PT log(Xi)PP
T log(Xj)P )W b

ij .

Proof of Eqn. (17)

Differentiating the objective function f1 with respect to the transformation
matrix P is:

∂f̃1

∂P
=2

∑
i,j

tr(4 log(Xi)PP
T log(Xi)P − 2 log(Xi)

PPT log(Xj)P − 2 log(Xj)PPT log(Xi)P )Ww
ij

=8
∑
i,j

(log(Xi)PP
T log(Xi)P

− log(Xi)PP
T log(Xj)P )Ww

ij .
(22)

Similarly,

∂f̃2

∂P
=8

∑
i,j

(log(Xi)PP
T log(Xi)P

− log(Xi)PP
T log(Xj)P )W b

ij .

(23)

Now, combining (22) and (23) gives

∂(f1 − f2)

∂P
=8

∑
i,j

(log(Xi)PP
T log(Xi)P

− log(Xi)PP
T log(Xj)P )(Ww

ij −W b
ij).

(24)

http://www.vlfeat.org/
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