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Experiment: Low-rank Matrix Completion on Random Data

» The /4-norm Is a convex surrogate of /o-norm, but it may be too loose. This work aims to solve the following nonconvex nonsmooth low-rank minimization problem Test on the following problem with different nonconvex surrogate functions

» A better choice Is to use nonconvex surrogate functions, e.g., {,-norm (0 < p < 1). | m

» The nuclear norm Is a convex surrogate of the rank function, but it may be too loose. AL F(X) = Z (X)) + 1(X), (2) oy (X 1 X — M2 7

» A better choice is to apply the nonconvex surrogate functions of /p-norm on the , | =1 mxIn Z 9r(oilX)) + 5”73&2( — M)l (7)
where oj(X) denotes the /-th singular value of X € R™*" (assume m < n). i=1

singular values. - - - - - where Q is the index set, and P, : R™*" mxnis g ||
. , Q — R IS a linear operator that
» However, the nonconvex low-rank minimization is much more challenging than the The penaity function g, and loss function f satisly the following assumptions: P

nonconvex sparse minimization - g\ : R — R is continuous, concave and monotonically increasing on [0, o). g, is possibly keep§ the entries in {2 unchanged and those outside 2 zeros.

1= 1 p p p: P P >
. . . ' 0.5
» We propose a general solver for nonconvex nonsmooth low-rank minimization. nonsmooth. 0 \ N‘_\'\\ \‘ ~—APGL
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» - R™M — R™ is a smooth function with Lipschitz continuous gradient, i.e.,
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Many Nonconvex Surrogate Functions of the /y-norm

0 ——|RNN - MCP
$ IRNN - ETP
|VH(X) — VE(Y)||r < L(F)|X = Y||r, ¥ X, Y € R™*" £ \ \ //
| | | where L(f) > 0 is called the Lipschitz constant of V. f is possibly nonconvex. S 05 ' 4 03 4
Table: Popular nonconvex surrogate functions of Figure: lllustration of the popular nonconvex “vamples: squared 10Ss HA(X) B sz and logistic loss 3 \ . . / /
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PO IR ; (@ Lonorm b) scaD Motivation: two key inequalities: (3) and (5). (a) random data without noise (b) random data with noise
log(v+1) (v0+1) log(~v+1) p . . L, . " . _ : i
op [N £ o< At ifh <o ; s : 5 | » Since g, is concave on [0, c0), by the definition of the supergradient, we have Figure: Low-rank matrix completion on random adata.
12> 0, it 6 > ~\ 2, 2 N\ S5 s K K k
o IR T AL 6:((X)) < ga(ai(XF)) + W(0i(X) — i(X¥)). 3)
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Laplace A(1 — exp(—?1)) ~exp(—2) % 1 / %O.S % 1//’ % 1\\ f(X) < f(X ) T <Vf(x )7 X-—X > T EHX — X HF7 V,u > L(f) (5)
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.Thelrsupergr.adlents are ngnnegatlve g N N g X < i Oi 5 M . TNNR-ADMM, IRNN-L,, and IRNN-SCAD, respectively.
and monotonically decreasing. bz e e B b 2 w6 b 2 4 08 %2 a6 | ) ) I=1 ) | |
(9) Geman (h) Laplace Since o1(X*) > oo(X") > --- > o(X") > 0, by the antimonotone property of supergradient . l
(1), we have o oS- Lo

. |EEJTNNR - ADMM  |BIRNN - MCP
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0<wyf<wf<-..<wk
This key property guarantees that problem (6) has a closed form solution by Weighted
Singular Value Thresholding.

9(X,) + V3 (X=X, ) Iteratively Reweighted Nuclear Norm (IRNN) algorithm: Alternately updating w by (4) and

Supergradient of a Concave Function g

Definition Letg: R”" — R be concave. A

vector v is a supergradient of g at the point L N X by (6) to solve (2).

X € R" if foreveryy € R", the following Vs N 0(x,) + V] (X=X, ) N N

Inequality holds 90x)+vI (x=x) /| » Convergence Analysis of IRNN Figure: Comparison of the PSNR values by
g(x) + (v,y —x) > g(y). ) different matrix completion algorithms.

All supgrgradignts of g at x are called Figure: Superg:;i dientzzof o concave Thegrgm The sequence (X} g.enerated by IRN/ﬁ\I satisfifsfhe fo_llLo(;vingk pro,cz(eqties: Take Home Message

superdifferential, denoted as 8g(x). function. vy is a supergradient at x4, and v» > F(X ) IS monotonically decreasing. Indeedq, F(X ) — F(X " ) > L 5 HX — X H2 > 0; » Use nonconvex surrogate rank

Key Lemma The superdifferential of a concave and vz are supergradients at Xo. > lim (xk _ xk“) —0; function instead of nuclear norm;

function g IS an antimonotone OPQTHTOE i-e-: »977090 sequence {Xk} is bounded: (a) Original Image (b) Noisy Image (c) APGL (d) IRNN-L, > Iteratively Rewelghted Nuclear Norm

u—v,x—y) <0, (1) . Any accumulation point of {Xk} ’is a stationary point to problem (2) Figure: Image recovery on more images. (IRNN), the first general solver to (2),
for any u € 9g(x), v € dg(y). | was proposed.
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