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Motivation

IThe `1-norm is a convex surrogate of `0-norm, but it may be too loose.
IA better choice is to use nonconvex surrogate functions, e.g., `p-norm (0 < p < 1).
IThe nuclear norm is a convex surrogate of the rank function, but it may be too loose.
IA better choice is to apply the nonconvex surrogate functions of `0-norm on the

singular values.
IHowever, the nonconvex low-rank minimization is much more challenging than the

nonconvex sparse minimization.
IWe propose a general solver for nonconvex nonsmooth low-rank minimization.

Many Nonconvex Surrogate Functions of the `0-norm

Table: Popular nonconvex surrogate functions of
||θ||0 and their supergradients.

Penalty Formula gλ(θ), θ ≥ 0, λ > 0 Supergradient ∂gλ(θ)

Lp-norm λθp

{
∞, if θ = 0,
λpθp−1, if θ > 0.

SCAD


λθ, if θ ≤ λ,
−θ2+2γλθ−λ2

2(γ−1) , if λ < θ ≤ γλ,
λ2(γ+1)

2 , if θ > γλ.


λ, if θ ≤ λ,
γλ−θ
γ−1 , if λ < θ ≤ γλ,

0, if θ > γλ.

Logarithm λ
log(γ+1) log(γθ + 1) γλ

(γθ+1) log(γ+1)

MCP

{
λθ − θ2

2γ , if θ < γλ,
1
2γλ

2, if θ ≥ γλ.

{
λ− θ

γ , if θ < γλ,

0, if θ ≥ γλ.

Capped L1

{
λθ, if θ < γ,

λγ, if θ ≥ γ.


λ, if θ < γ,

[0, λ], if θ = γ,

0, if θ > γ.

ETP λ
1−exp(−γ)(1− exp(−γθ)) λγ

1−exp(−γ) exp(−γθ)

Geman λθ
θ+γ

λγ
(θ+γ)2

Laplace λ(1− exp(−θ
γ)) λ

γ exp(−θ
γ)

The same properties:
IAll the above nonconvex surrogate

functions are concave and monotonically
increasing on [0,∞).

ITheir supergradients are nonnegative
and monotonically decreasing.

Figure: Illustration of the popular nonconvex
surrogate functions of ||θ||0 (left), and their
supergradients (right).
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(a) Lp-norm
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(b) SCAD
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(c) Logarithm
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(d) MCP
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(e) Capped L1
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(f) ETP
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(g) Geman
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(h) Laplace

Supergradient of a Concave Function g

Definition Let g : Rn → R be concave. A
vector v is a supergradient of g at the point
x ∈ Rn if for every y ∈ Rn, the following
inequality holds

g(x) + 〈v,y−x〉 ≥ g(y).

All supergradients of g at x are called
superdifferential, denoted as ∂g(x).
Key Lemma The superdifferential of a concave
function g is an antimonotone operator, i.e.,

〈u− v,x−y〉 ≤ 0, (1)
for any u ∈ ∂g(x), v ∈ ∂g(y).

 1 1 1g( ) T x v x x

1x 2x

 2 3 2g( ) T x v x x

 2 2 2g( ) T x v x x

g( )x

Figure: Supergraidients of a concave
function. v1 is a supergradient at x1, and v2
and v3 are supergradients at x2.

Nonconvex Nonsmooth Low-Rank Minimization

This work aims to solve the following nonconvex nonsmooth low-rank minimization problem

min
X∈Rm×n

F (X) =
m∑

i=1

gλ(σi(X)) + f (X), (2)

where σi(X) denotes the i-th singular value of X ∈ Rm×n (assume m ≤ n).
The penalty function gλ and loss function f satisfy the following assumptions:

Igλ : R→ R+ is continuous, concave and monotonically increasing on [0,∞). gλ is possibly
nonsmooth.
Examples: all the known nonconvex surrogate functions of `0-norm.

I f : Rm×n → R+ is a smooth function with Lipschitz continuous gradient, i.e.,
||∇f (X)−∇f (Y)||F ≤ L(f )||X− Y||F , ∀ X,Y ∈ Rm×n,

where L(f ) > 0 is called the Lipschitz constant of ∇f . f is possibly nonconvex.
Examples: squared loss ||A(X)− b||2 and logistic loss.

IF (X)→∞ iff ||X ||F →∞.

Iteratively Reweighted Nuclear Norm (IRNN): A General Solver to (2)

Method: when updating Xk+1, linearize gλ and f at Xk, simultaneously.
Motivation: two key inequalities: (3) and (5).

ISince gλ is concave on [0,∞), by the definition of the supergradient, we have
gλ(σi(X)) ≤ gλ(σi(Xk)) + wk

i (σi(X) − σi(Xk)), (3)
where

wk
i ∈ ∂gλ(σi(Xk)). (4)

ISince ∇f (X) is Lipschitz continuous, we have

f (X) ≤ f (Xk) + 〈∇f (Xk),X− Xk〉 +
µ

2
||X− Xk||2F , ∀µ ≥ L(f ). (5)

Combining (3) and (5), we update X by

Xk+1 = arg min
X

m∑
i=1

wk
i σi(X) + 〈∇f (Xk),X− Xk〉 +

µ

2
||X− Xk||2F

= arg min
X

m∑
i=1

wk
i σi(X) +

µ

2

∥∥∥∥X−
(

Xk − 1
µ
∇f (Xk)

)∥∥∥∥2

F
.

(6)

Since σ1(Xk) ≥ σ2(Xk) ≥ · · · ≥ σm(Xk) ≥ 0, by the antimonotone property of supergradient
(1), we have

0 ≤ wk
1 ≤ wk

2 ≤ · · · ≤ wk
m.

This key property guarantees that problem (6) has a closed form solution by Weighted
Singular Value Thresholding.
Iteratively Reweighted Nuclear Norm (IRNN) algorithm: Alternately updating w by (4) and
X by (6) to solve (2).

Convergence Analysis of IRNN

Theorem The sequence {Xk} generated by IRNN satisfies the following properties:
IF (Xk) is monotonically decreasing. Indeed, F (Xk)− F (Xk+1) ≥ µ−L(f )

2 ||X
k − Xk+1||2F ≥ 0;

I lim
k→∞

(Xk − Xk+1) = 0;

IThe sequence {Xk} is bounded;
IAny accumulation point of {Xk} is a stationary point to problem (2).

Experiment: Low-rank Matrix Completion on Random Data

Test on the following problem with different nonconvex surrogate functions

min
X

m∑
i=1

gλ(σi(X)) +
1
2
||PΩ(X−M)||2F , (7)

where Ω is the index set, and PΩ : Rm×n → Rm×n is a linear operator that
keeps the entries in Ω unchanged and those outside Ω zeros.

20 22 24 26 28 30 32 34
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

Fr
eq

ue
nc

y 
of

 S
uc

es
s

 

 

ALM
IRNN-Lp
IRNN-SCAD
IRNN-Logarithm
IRNN-MCP
IRNN-ETP

(a) random data without noise
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(b) random data with noise

Figure: Low-rank matrix completion on random data.

Experiment: Low-rank Matrix Completion for Image Recovery

(1)

(2)

(a) Original Image (b) Noisy Image (c) APGL (d) LMaFit (e) TNNR-ADMM (f) IRNN-Lp (g) IRNN-SCAD

Figure: (a) Original image. (b) Noisy image. (c)-(g) Recovered images by APGL, LMaFit,
TNNR-ADMM, IRNN-Lp, and IRNN-SCAD, respectively.

Image recovery by APGL lp

Image recovery by APGL lp

Image recovery by APGL lp

   

(3)

(4)

(5)

(6)

(a) Original Image (b) Noisy Image (c) APGL (d) IRNN-Lp

Figure: Image recovery on more images.
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Figure: Comparison of the PSNR values by
different matrix completion algorithms.

Take Home Message
IUse nonconvex surrogate rank

function instead of nuclear norm;
I Iteratively Reweighted Nuclear Norm

(IRNN), the first general solver to (2),
was proposed.
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