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Subspace Segmentation Problem

Given a set of data vectors X = [X1, · · · ,Xk] = [x1, · · · ,xn] ∈ Rd×n drawn
from a union of k subspaces {Si}ki=1. Let Xi be a collection of ni data vectors
drawn from the subspace Si, n =

∑k
i=1 ni. The task is to segment the data

according to the underlying subspaces they are drawn from.

An example of three subspaces. Block diagonal affinity matrix.

Related Works

• Spectral Clustering (SC) is used as the framework for subspace segmentation.
•The main challenge by using SC is to define a ”good” affinity matrix (or

graph) Z ∈ Rn×n. Each entry zij measures the similarity between xi and xj.
• Ideally, the affinity matrix should be block diagonal (sparsity between-

cluster), and has grouping effect (sufficient connections within-cluster).

SSC (Sparse Subspace Clustering) (Elhamifar, CVPR 2009, TPAMI 2013) or
ℓ1-Graph (S. Yan, SDM 2009, TIP 2010) :

min ||Z ||1 s.t. X = XZ, diag(Z) = 0.

minλ||Z ||1 +
1

2
||X−XZ ||2F , s.t. diag(Z) = 0.

LRR (Low-Rank Representation) (G. Liu et al., ICML 2010, TPAMI 2012):

min ||Z ||∗ s.t. X = XZ .

minλ||Z ||∗ + ||X−XZ ||2,1.
LSR (Least Squares Regression) (C. Lu and S. Yan, ECCV 2012):

min ||Z ||F s.t. X = XZ .

minλ||Z ||2F +
1

2
||X−XZ ||2F .
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SSC LRR LSR CASS

SSC pursues sparsity, but has no grouping effect.
LRR and LSR have strong grouping effect, but weak in sample selection.
A better choice, balances SSC (ℓ1) and LSR (ℓ2).

Correlation Adaptive Subspace Segmentation

Trace Lasso is an adaptive norm which balances the ℓ1-norm and ℓ2-norm. It
is formally defined as

Ω(w) = ||XDiag(w)||∗.
If the data are uncorrelated (the data points are orthogonal, XT X = I), trace
Lasso is equal to the ℓ1-norm:

||XDiag(w)||∗ = ||Diag(w)||∗ =
n∑

i=1

|wi| = ||w ||1.

If the data are highly correlated (the data points are all the same, X = x1 1
T ,

XT X = 11T ), trace Lasso is equal to the ℓ2-norm:

||XDiag(w)||∗ = ||x1w
T ||∗ = ||x1||2||w ||2 = ||w ||2.

For other cases, trace Lasso interpolates between the ℓ2-norm and ℓ1-norm:

||w ||2 ≤ ||XDiag(w)||∗ ≤ ||w ||1.

Generally speaking, trace Lasso is adaptive to the correlation of X. If X is of
low correlation, trace Lasso is close to the ℓ1-norm. If X is of high correlation,
trace Lasso is close to the ℓ2-norm.
Correlation Adaptive Subspace Segmentation (CASS)
CASS with clean data:

min
w∈Rn

||XDiag(w)||∗ s.t. y = Xw . (1)

Enforced Block Sparse (EBS) Conditions. Given a matrix X ∈ Rd×n and a
vector w = [wa;wb;wc] ∈ Rn, w ̸= 0. Let wB = [0;wb;0] ∈ Rn. Saying
f(X,w) satisfies the EBS conditions if

(1) f(X,w) = f(XP,P−1w), for any permutation matrix P ∈ Rn×n;
(2) f(X,w) ≥ f(X,wB), and the equality holds if and only if w = wB.

Theorem 1 If f(X,w) satisfies the EBS conditions, and the data in X =

[X1, · · · ,Xk] are drawn from independent subspaces. y is a new point in Si.
The solution to the following problem

min
w

f(X,w) s.t. y = Xw,

is block sparse, i.e., w∗
i ̸= 0 and w∗

j = 0, for all j ̸= i.

Theorem 2 Trace Lasso ||XDiag(w)||∗ satisfies the EBS conditions. Thus the
solution to problem (1) is block sparse when the subspaces are independent.

The block sparse property guarantees that CASS achieves perfect segmentation
under certain condition as other methods, e.g. LRR and LSR.
CASS with noisy data:

min
w

λ||XDiag(w)||∗ +
1

2
||y−Xw ||22. (2)

Theorem 3 (The Grouping Effect). Given a data vector y ∈ Rd, data points
X = [x1, · · · ,xn] ∈ Rd×n and parameter λ > 0. Let w∗ = [w∗

1, · · · , w∗
n]

T ∈
Rn be the optimal solution to problem (2). If xi → xj, then w∗

i → w∗
j .

The grouping effect of CASS guarantees that if xi and xj are highly correlat-
ed, their corresponding coefficients are almost the same. Then they tends to be
grouped together.
Segmentation Algorithm.

1. For each xi in X, solve problem (2) based on the dictionary Xî =

[x1, · · · ,xi−1,xi+1, · · · ,xn]. Denote the coefficient as w∗
i . Let W∗ =

[w∗
1, · · · ,w∗

n].
2. Construct the affinity matrix by (|W∗|+ |W∗T |)/2.
3. Segment the data into k groups by Normalized Cuts.

Experiments
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Segmentation errors (%) on the Hopkins 155 data.
kNN SSC LRR LSR CASS

MAX 45.59 39.53 36.36 36.36 32.85
MEAN 13.44 4.02 3.23 2.50 2.42
STD 12.90 10.04 6.60 5.62 5.84
Face clustering accuracy on the Yalbe B database.

kNN SSC LRR LSR CASS
5 subjects 56.88 80.31 86.56 92.19 94.03
8 subjects 52.34 62.90 78.91 80.66 91.41
10 subjects 50.94 52.19 65.00 73.59 81.88

Digit clustering accuracy on the MNIST database.
kNN SSC LRR LSR CASS

ACC. 61.00 62.60 66.80 68.00 73.80

(b) LRR(a) SSC (c) LSR (d) CASS

Affinity matrices obtained by different methods on the Yale B database.

Take Home Message

•We propose the Correlation Adaptive Subspace Segmentation (CASS)
method by using the trace Lasso.

•CASS is adaptive to the data correlation. When the data correlation is low, it
is close to SSC. When the data correlation is high, it is close to LSR.

•CASS leads to a block diagonal representation and has the grouping effect.


