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» Subspace Segmentation Problem

> Related Work

e Sparse Subspace Clustering (SSC)

* Low-Rank Representation (LRR)

Multi-Subspace Representation (MSR)

e Subspace Segmentation via Quadratic Programming (SSQP)
Least Squares Regression (LSR)

» Enforced Block Diagonal Conditions

» Correlation Adaptive Subspace Segmentation (CASS)



Subspace Segmentation

» Given sufficient data points drawn from multiple subspaces,

the goal is to find

the number of subspaces

their dimensions

a basis of each subspace

the segmentation of the data corresponding to different
subspaces

e




Applications

» Face clustering




Algorithm

Spectral Clustering:
» Graph construction: construct a graph (affinity matrix) to

measure the similarities between data points

» Segment the data points into multiple clusters



Subspace Assumption

» Disjoint subspaces

Two subspaces are said to be disjoint if they intersect only at the orgin.
k subspaces {S,;}i" , are said to be disjoint if every two subspaces are disjoint.

» Independent subspaces

k subspaces {S; f , are said to be independent if dim{:::I;‘-,f-' lS?-)=Zi.”' . dim(S;),

where @ 1s the direct sum.

» Orthogonal subspaces



Previous Work: SSC

> Graph construction by sparse representation
min ||Z||p s.t. X = X Z. diag(Z) =0,
min || Z||; s.t. X = X Z. diag(Z) = 0.

» The solution to the above L1 minimization problem is
block diagonal when the data are from independent
subspace.

Bin Cheng, Jianchao Yang, Shuicheng Yan, Yun Fu, Thomas S. Huang, Learning with 11-graph for image analysis. TIP, 2010

Elhamifar, E. and R. Vidal. Sparse Subspace Clustering. CVPR 2009



Previous Work: LRR

» Graph construction by low rank representation
minrank(Z) s.t. X = XZ,
min || 2|l s.t. X = X Z,

» The solution to the above nuclear norm minimization
problem is block diagonal when the data are from
independent subspace.

1u, G. n, S>. . subspace structures

by low-rank representation.



Previous Work: MSR

» Graph construction by low rank representation

min || Z||, +0||Z]]1 s.t. X = X Z.diag(Z) = 0.

» The solution to the above minimization problem is block
diagonal when the data are from independent subspace.

D. Luo, et al., “Multi-subspace representation and discovery,” in ECML, 2011




Previous Work: SSQP

» Subspace Segmentation via Quadratic Programming

min || XZ — X||% + )\ AAR s.t. Z > 0.diag(Z) = 0.

» The solution to the above nuclear norm minimization is
block diagonal when the data are from orthogonal
subspace.

usen Wang, Xiaotong Yuan, liansheng Yao,

Subspace Segmentation via Quadratic Programming. AAAI 2011.



Least Squares Regression

» Subspace Segmentation via Least Squares Regression

min || Z||p s.t. X = X Z,

» The solution to the above minimization is block diagonal
when the data are from independent subspace.
» Grouping effect of LSR (in vector form)

min ||y — XzI3 + All=]13.

We have
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where r = x; x; is the sample correlation.

anyi Lu,

Regression. ECCV. 2012.



» Consider the following general problem

min f(Z) st. Ze€ 2 ={Z|X = XZ}.

» What kind of objective function involves the block
diagonal property under certain condition?

Cany1 Lu Hai Min, Shuicheng Yan. Efficient Subspace Segmentation via Least Squares




Enforced Block Diagonal Conditions

Enforced Block Diagonal Conditions A function f is defined on 2(# &)

AB _
C D] c (2, Z # 0, where A and

D are square matrices, B and C' are of compatible dimension, A, D € (2. Let

ZD = {A O} e §2. We require
f

which is a set of matrices. For any Z = [

f(Z) = f(PTZP), for any permutation matrix P, PTZP € (2.
(2) f(Z) > f(ZP), where the equality holds if and only if B = C = 0 (or

anyi Lu, ,

Regression. ECCV. 2012.



Block Diagonal Property: independent subspaces

Theorem 1. Assume the data sampling is sufficient, and the subspaces are independen-
1. If f satisfies the EBD conditions (1)(2), the optimal solution Z* to the problem

min f(Z) s.. Ze€ 2 ={Z|X =XZ}.

is block diagonal:
ZF 0 -0 0
0 Z5--- 0
Zr =1 . . ,
0007

with ZF € R™*™ corresponding to X;, for each i. Furthermore, if [ satisfies the
EBD conditions (1)(2)(3), for each 1, Z} is also the optimal solution to the following
problem:

min f(Y) st X; = XY

anyi Lu, ,

Regression. ECCV. 2012.



Block Diagonal Property

Table 1. Criteria which satisfy the EBD conditions (1)(2)(3).

i3 0
SSC | Z]|o or || Z]|1 {Z|X = X Z, diag(Z) = 0}
LRR | Z]]+ {Z|X = XZ}
SSQP 12" Z||x [Z|X = XZ,Z > 0,diag(Z) = 0}
MSR | Z])1 + 6] Z]|~ {Z|X = X Z,diag(Z) = 0}
LSR 1Z1[= 71X = X Z)
(i 2o A Za [P )° AY — ¥ 7 A7)
Other choices W :1} U,Jp; 50,550 {Z|X = X Z,diag(Z) = 0}

Proposition 1 If f; satisfies the EBD conditions (1)(2)(3) on £2;, then also
S Aifi, (A >0) on MM 02,(# 9).



Block Diagonal Property : orthogonal subspaces

Block diagonal property when the subspaces are orthogonal

Theorem 2. Ifthe subspaces are orthogonal, and f satisfies the EBD conditions (1)(2),
the optimal solution(s) to the following problem:

min || X — X Z||2, + Af(Z) 9)

=R

p > 0, and \ > 0 is a parameter which balances the effects of two terms.

must be block diagonal, where || - ||2.,, is defined as || M||2., = (ZJ(ZT ) Ufj)%) ,




Block Diagonal Property : disjoint subspaces

» Block diagonal property by SSC on disjoint subspaces

Theorem 3. Assume the data points are sampled from k subspaces {S ¢}f , of dimen-

sions {d;}"_,. Let X; denote the data points on S; and X, denote the data points on
the other subspaces. Let W; be the set of all full rank submatrices X; € RP*% of X;.
If the sufficient condition

max oy, (X;) > \/ﬂ' A; max cos(f;;)
XN, eW, iEL

is satisfied for all i € {1,--- |k}, then for every nonzero y € 8;, the solution to the
following problem

- |
I arg min ‘
.

I

Elhamifar, E. and R. Vidal. Clustering disjoint subspaces via sparse representation. ICASS, 2010



Block Diagonal Property : disjoint subspaces

» Block diagonal property by LSR on disjoint subspaces

Theorem 4. Assume the data points are sampled from k subspaces {S. ¢}’: , of dimen-
sions {d;}!'_,. Let X; denote the data points on S; and X ; denote the data points on
the other subspaces. Let W; be the set of all full rank submatrices X; € RP*% of X,.
If the sufficient condition

max r:r,,;al[)_({} > v DA, max cos(f;;)
X, eW, ) j#i

is satisfied for all i € {1,---  k}, then for every nonzero y € 8, the solution to the
following problem
c: e 1] . oo |G
g:i arg 111i11‘ E‘f H sty =[Xi, Xi] |-




Correlation Adaptive Subspace Segmentation

» A better choice: balance the sparsity and grouping effect
» Correlation Adaptive Subspace Segmentation (CASS)

min || XDiag(w)l|, s.t. v = Xw.

weR™
» If the data are uncorrelated (the data points are

orthogonal XX = I)

mn

| X Diag(w)||. = ||Diag(w)[[« = Y _ [wil = [Jwl]1.
=1

» If the data are highly correlated (the data points are all
the same, X = 2,17, X7TXx = 117)
| XDiag(w)||« = [|lz1w” [[« = [[z1]|2||w]]2 = [[w]]2.
» For other case,

[|lw[l2 < [|XDiag(w)][« < [[wl]x

u, eta

1CC

V. 2013.



Correlation Adaptive Subspace Segmentation

» CASS also leads to block sparse solution when the data
are from independent subspace.
» Grouping effect of CASS

Theorem 3 Given a data vector y € RY data points

X = [x1,-- 2] € R¥*"™ and parameter A > (. Let
w* = [w}, - ,wk]T € R™ be the optimal solution to the
following problem

1 :
min §||;i;4r — Xw||5 + || X Diag(w)||.

If v; — x;, then wi — w>.
. L J 7 7

u, eta

1CC

V. 2013.



(a) SSC (b) LRR \ (c) LSR (d) CASS

Comparison of different affinity matrices



Experiments: Motion Segmentation

Table 1. The segmentation errors (%) on the Hopkins 155
database.

Comparison under the same setting
kKNN SSC LRR LSR CASS

MAX 4559 3953 36.36  36.36 32.85
MEAN 1344 402 3.23 2.50 242
STD 1290 10.04  6.60 S.62 5.84




Experiments: Face Clustering

Table 2. The segmentation accuracies (%) on the Extended Yale B

database.
kNN | SSC | LRR | LSR | CASS
S subjects | 56.88 | 80.31 | 86.56 | 92.19 | 94.03
3 subjects | 52.34 | 62.90 | 78.91 | 80.66 | 91.41
10 subjects | 50.94 | 52.19 | 65.00 | 73.59 | 81.88
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